Structural mobility of the monomeric C-terminal domain of the HIV-1 capsid protein

被引:23
作者
Alcaraz, Luis A. [1 ]
del Alamo, Marta [2 ]
Mateu, Mauricio G. [2 ]
Neira, Jose L. [1 ,3 ]
机构
[1] Univ Miguel Hernandez, Inst Biol Mol & Celular, Alicante 03202, Spain
[2] Univ Autonoma Madrid, Ctr Biol Mol Severo Ochoa CSIC UAM, E-28049 Madrid, Spain
[3] Biocomputat & Complex Syst Phys Inst, Zaragoza, Spain
关键词
flexibility; human immunodeficiency virus; NMR; structure;
D O I
10.1111/j.1742-4658.2008.06478.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The capsid protein of HIV-1 (p24) (CA) forms the mature capsid of the human immunodeficiency virus. Capsid assembly involves hexamerization of the N-terminal domain and dimerization of the C-terminal domain of CA (CAC), and both domains constitute potential targets for anti-HIV therapy. CAC homodimerization occurs mainly through its second helix, and it is abolished when its sole tryptophan is mutated to alanine. This mutant, CACW40A, resembles a transient monomeric intermediate formed during dimerization. Its tertiary structure is similar to that of the subunits in the dimeric, non-mutated CAC, but the segment corresponding to the second helix samples different conformations. The present study comprises a comprehensive examination of the CACW40A internal dynamics. The results obtained, with movements sampling a wide time regime (from pico- to milliseconds), demonstrate the high flexibility of the whole monomeric protein. The conformational exchange phenomena on the micro-to-millisecond time scale suggest a role for internal motions in the monomer-monomer interactions and, thus, flexibility of the polypeptide chain is likely to contribute to the ability of the protein to adopt different conformational states, depending on the biological environment.
引用
收藏
页码:3299 / 3311
页数:13
相关论文
共 71 条
[1]   Intramolecular dynamics of low molecular weight protein tyrosine phosphatase in monomer-dimer equilibrium studied by NMR:: A model for changes in dynamics upon target binding [J].
Åkerud, T ;
Thulin, E ;
Van Etten, RL ;
Akke, M .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 322 (01) :137-152
[2]   Flexibility in HIV-1 assembly subunits: Solution structure of the monomeric C-terminal domain of the capsid protein [J].
Alcaraz, Luis A. ;
del Alamo, Marta ;
Barrera, Francisco N. ;
Mateu, Mauricio G. ;
Neira, Jose L. .
BIOPHYSICAL JOURNAL, 2007, 93 (04) :1264-1276
[3]   Solution structure and backbone dynamics of the pleckstrin homology domain of the human protein kinase B (PKB/Akt).: Interaction with inositol phosphates [J].
Auguin, D ;
Barthe, P ;
Augé-Sénégas, MT ;
Stern, MH ;
Noguchi, M ;
Roumestand, C .
JOURNAL OF BIOMOLECULAR NMR, 2004, 28 (02) :137-155
[4]   Binding of the C-terminal domain of the HIV-1 capsid protein to lipid membranes:: a biophysical characterization [J].
Barrera, FN ;
Hurtado-Gómez, E ;
Lidón-Moya, MC ;
Neira, JL .
BIOCHEMICAL JOURNAL, 2006, 394 (01) :345-353
[5]   The C-terminal half of the human immunodeficiency virus type 1 Gag precursor is sufficient for efficient particle assembly [J].
Borsetti, A ;
Ohagen, Å ;
Göttlinger, HG .
JOURNAL OF VIROLOGY, 1998, 72 (11) :9313-9317
[6]   Solution structure and dynamics of yeast elongin C in complex with a von Hippel-Lindau peptide [J].
Botuyan, MV ;
Mer, G ;
Yi, GS ;
Koth, CM ;
Case, DA ;
Edwards, AM ;
Chazin, WJ ;
Arrowsmith, CH .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 312 (01) :177-186
[7]   Temperature dependence of intramolecular dynamics of the basic leucine zipper of GCN4: Implications for the entropy of association with DNA [J].
Bracken, C ;
Carr, PA ;
Cavanagh, J ;
Palmer, AG .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 285 (05) :2133-2146
[8]  
Cavanagh J., 1996, PROTEIN NMR SPECTROS, P167
[9]   Backbone dynamics of the monomeric λ repressor denatured state ensemble under nondenaturing conditions [J].
Chugha, Preeti ;
Oas, Terrence G. .
BIOCHEMISTRY, 2007, 46 (05) :1141-1151
[10]   Motional model analyses of protein and peptide dynamics using C-13 and N-15 NMR relaxation [J].
Daragan, VA ;
Mayo, KH .
PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY, 1997, 31 :63-105