Triple-helix formation at different positions on nucleosomal DNA

被引:41
作者
Brown, PM [1 ]
Madden, CA [1 ]
Fox, KR [1 ]
机构
[1] Univ Southampton, Sch Biol Sci, Div Biochem & Mol Biol, Southampton SO16 7PX, Hants, England
关键词
D O I
10.1021/bi981768n
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have prepared a series of seven DNA fragments, based on the 160 base-pair tyrT sequence, which contain 12-14 base-pair oligopurine tracts at different positions, and have examined their availability for triple-helix formation after reconstituting onto nucleosome core particles. By using DNase I footprinting we find that in general, triplexes can only be formed at sites located toward the ends of nucleosomal DNA fragments. For the native fragment, bases 1-145 are in contact with the protein surface. Stable triplexes can be formed on these nucleosome-bound fragments for sites located before position 33 and beyond position 94. These are formed with both CT-containing oligonucleotides, generating parallel triplexes at pH 5.5, and CT-containing oligonucleotides forming antiparallel triplexes at pH 7.5. No antiparallel triplexes were formed at sites located between these positions. Parallel triplexes were also not formed at sites between positions 39-50 and 43-54 with oligonucleotide concentrations as high as 30 mu M. However parallel tripler formation was evident at a site between positions 48 and 59, albeit with a reduced affinity compared to free DNA, suggesting that this oligopurine tract is less tightly associated with the nucleosome surface or that it has an altered translational position. The introduction of an oligopurine tract in the vicinity of the nucleosome dyad caused the fragment to adopt a different nucleosomal position, which could be targeted with parallel, but not antiparallel triplexes.
引用
收藏
页码:16139 / 16151
页数:13
相关论文
共 52 条
[1]   DIFFERENTIAL-EFFECTS OF SIMPLE REPEATING DNA-SEQUENCES ON GENE-EXPRESSION FROM THE SV40 EARLY PROMOTER [J].
AMIRHAERI, S ;
WOHLRAB, F ;
WELLS, RD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (07) :3313-3319
[2]   2ND STRUCTURAL MOTIF FOR RECOGNITION OF DNA BY OLIGONUCLEOTIDE-DIRECTED TRIPLE-HELIX FORMATION [J].
BEAL, PA ;
DERVAN, PB .
SCIENCE, 1991, 251 (4999) :1360-1363
[3]   Polypurine/polypyrimidine sequences as cis-acting transcriptional regulators [J].
Brahmachari, SK ;
Sarkar, PS ;
Raghavan, S ;
Narayan, M ;
Maiti, AK .
GENE, 1997, 190 (01) :17-26
[4]   DNA triple-helix formation on nucleosome-bound poly(dA)•poly(dT) tracts [J].
Brown, PM ;
Fox, KR .
BIOCHEMICAL JOURNAL, 1998, 333 :259-267
[5]   Nucleosome core particles inhibit DNA triple helix formation [J].
Brown, PM ;
Fox, KR .
BIOCHEMICAL JOURNAL, 1996, 319 :607-611
[6]   Effect of a triplex-binding ligand on triple helix formation at a site within a natural DNA fragment [J].
Brown, PM ;
Drabble, A ;
Fox, KR .
BIOCHEMICAL JOURNAL, 1996, 314 :427-432
[7]   CRYSTALLOGRAPHIC STRUCTURE OF THE OCTAMERIC HISTONE CORE OF THE NUCLEOSOME AT A RESOLUTION OF 3.3 A [J].
BURLINGAME, RW ;
LOVE, WE ;
WANG, BC ;
HAMLIN, R ;
XUONG, NH ;
MOUDRIANAKIS, EN .
SCIENCE, 1985, 228 (4699) :546-553
[8]   EFFECT OF A TRIPLER-BINDING LIGAND ON PARALLEL AND ANTIPARALLEL DNA TRIPLE HELICES USING SHORT UNMODIFIED AND ACRIDINE-LINKED OLIGONUCLEOTIDES [J].
CASSIDY, SA ;
STREKOWSKI, L ;
WILSON, WD ;
FOX, KR .
BIOCHEMISTRY, 1994, 33 (51) :15338-15347
[9]   Triplex DNA: Fundamentals, advances, and potential applications for gene therapy [J].
Chan, PP ;
Glazer, PM .
JOURNAL OF MOLECULAR MEDICINE-JMM, 1997, 75 (04) :267-282
[10]   FOOTPRINTING STUDIES ON LIGANDS WHICH STABILIZE DNA TRIPLEXES - EFFECTS ON STRINGENCY WITHIN A PARALLEL TRIPLE-HELIX [J].
CHANDLER, SP ;
STREKOWSKI, L ;
WILSON, WD ;
FOX, KR .
BIOCHEMISTRY, 1995, 34 (21) :7234-7242