Nanoporous materials for biomedical devices

被引:53
作者
Adiga, Shashishekar P. [1 ]
Curtiss, Larry A. [1 ]
Elam, Jeffrey W. [2 ]
Pellin, Michael J. [3 ]
Shih, Chun-Che [4 ,5 ]
Shih, Chun-Ming [6 ]
Lin, Shing-Jong [4 ,5 ,7 ]
Su, Yea-Yang [4 ]
Gittard, Shaun A. [8 ]
Zhang, Junping [8 ]
Narayan, Roger J. [8 ]
机构
[1] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA
[2] Argonnes Energy Systems Div, Argonne, IL USA
[3] Argonnes Mat Sci Div, Argonne, IL USA
[4] Natl Yang Ming Univ, Inst Clin Med, Sch Med, Div Cardiovasc Surg,Taipei Vet Gen Hosp, Taipei 112, Taiwan
[5] Natl Yang Ming Univ, Cardiovasc Res Ctr, Taipei 112, Taiwan
[6] Taipei Med Univ, Grad Inst Med Sci, Sch Med, Taipei, Taiwan
[7] Taipei Vet Gen Hosp, Div Cardiol, Taipei, Taiwan
[8] Univ N Carolina, Dept Biomed Engn, Chapel Hill, NC USA
关键词
D O I
10.1007/s11837-008-0028-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Nanoporous materials are currently being developed for use in implantable drug delivery systems, bioartificial organs, and other novel medical devices. Advances in nanofabrication have made it possible to precisely control the pore size, pore distribution, porosity, and chemical properties of pores it? nanoporous materials. As a result, these materials are attractive for regulating and sensing transport at the molecular level. In this work, the use of nanoporous membranes for biomedical applications is reviewed. The basic concepts underlying membrane transport are presented in the context of design considerations for efficient size sorting. Desirable properties of nanoporous membranes used in implantable devices, including biocompatibility and antibiofouling behavior, are also discussed. In addition, the use of surface modification techniques to improve the function of nanoporous membranes is reviewed. An intriguing possibility involves functionalizing nanoporous materials with smart polymers in order to modulate biomolecular transport in response to pH, temperature, ionic concentration, or other stimuli. These efforts open up avenues to develop smart medical devices that respond to specific physiological conditions.
引用
收藏
页码:26 / 32
页数:7
相关论文
共 55 条
[1]   Drug permeation through a temperature-sensitive poly(N-isopropylacrylamide) grafted poly(vinylidene fluoride) membrane [J].
Åkerman, S ;
Viinikka, P ;
Svarfvar, B ;
Putkonen, K ;
Järvinen, K ;
Kontturi, K ;
Näsman, J ;
Urtti, A ;
Paronen, P .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 1998, 164 (1-2) :29-36
[2]   RESTRICTED TRANSPORT IN SMALL PORES - MODEL FOR STERIC EXCLUSION AND HINDERED PARTICLE MOTION [J].
ANDERSON, JL ;
QUINN, JA .
BIOPHYSICAL JOURNAL, 1974, 14 (02) :130-150
[3]   Host response to tissue engineered devices [J].
Babensee, JE ;
Anderson, JM ;
McIntire, LV ;
Mikos, AG .
ADVANCED DRUG DELIVERY REVIEWS, 1998, 33 (1-2) :111-139
[4]   Functional hydrogel structures for autonomous flow control inside microfluidic channels [J].
Beebe, DJ ;
Moore, JS ;
Bauer, JM ;
Yu, Q ;
Liu, RH ;
Devadoss, C ;
Jo, BH .
NATURE, 2000, 404 (6778) :588-+
[5]  
Beerlage MAM, 2000, J APPL POLYM SCI, V75, P1180, DOI 10.1002/(SICI)1097-4628(20000228)75:9<1180::AID-APP12>3.0.CO
[6]  
2-P
[7]   Negatively thermoresponsive membranes with functional gates driven by zipper-type hydrogen-bonding interactions [J].
Chu, LY ;
Li, Y ;
Zhu, JH ;
Chen, WM .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (14) :2124-2127
[8]  
DAVIDSON MG, 1988, J MEMBRANE SCI, V35, P167
[9]  
de Gennes P.-G, 1979, POLYM PHYS
[10]  
DEAN WM, 1987, AICHE J, V33, P1409