Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor L. Moench)

被引:155
作者
Kebede, H
Subudhi, PK
Rosenow, DT
Nguyen, HT [1 ]
机构
[1] Texas Tech Univ, Dept Plant & Soil Sci, Plant Mol Genet Lab, Lubbock, TX 79409 USA
[2] Texas A&M Univ, Ctr Agr Res & Extens, Lubbock, TX 79401 USA
关键词
pre-flowering drought tolerance; stay green; genetic mapping; comparative mapping;
D O I
10.1007/s001220100541
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Drought is a major constraint in sorghum production worldwide. Drought-stress in sorghum has been characterized at both pre-flowering and post-flowering stages resulting in a drastic reduction in grain yield. In the case of post-flowering drought stress, lodging further aggravates the problem resulting in total loss of crop yield in mechanized agriculture. The present study was conducted to identify quantitative trait loci (QTLs) controlling post-flowering drought tolerance (stay green), pre-flowering drought tolerance and lodging tolerance in sorghum using an F-7 recombinant inbred line (RIL) population derived from the cross SC56xTx7000. The RIL lines, along with parents, were evaluated for the above traits in multiple environments. With the help of a restriction fragment length polymorphism (RFLP) map, which spans 1,355 cM and consists of 144 loci, nine QTLs, located over seven linkage groups were detected for stay green in several environments using the method of composite interval mapping. Comparison of the QTL locations with the published results indicated that three QTLs located on linkage groups A, G and J were consistent. This is considered significant since the stay green line SC56 used in our investigation is from a different source compared to B35 that was used in all the earlier investigations. Comparative mapping has shown that two stay green QTLs identified in this study corresponded to stay green QTL regions in maize. These genomic regions were also reported to be congruent with other drought-related agronomic and physiological traits in maize and rice, suggesting that these syntenic regions might be hosting a cluster of genes with pleiotropic effects implicated in several drought tolerance mechanisms in these grass species. In addition, three and four major QTLs responsible for lodging tolerance and pre-flowering drought tolerance, respectively, were detected. This investigation clearly revealed the important and consistent stay green QTLs in a different stay green source that can logically be targeted for positional cloning. The identification of QTLs and markers for pre-flowering drought tolerance and lodging tolerance will help plant breeders in manipulating and pyramiding those traits along with stay green to improve drought tolerance in sorghum.
引用
收藏
页码:266 / 276
页数:11
相关论文
共 36 条
[1]   IDENTIFICATION OF QUANTITATIVE TRAIT LOCI USING A SMALL SAMPLE OF TOPCROSSED AND F4 PROGENY FROM MAIZE [J].
BEAVIS, WD ;
SMITH, OS ;
GRANT, D ;
FINCHER, R .
CROP SCIENCE, 1994, 34 (04) :882-896
[2]   Towards a saturated sorghum map using RFLP and AFLP markers [J].
Boivin, K ;
Deu, M ;
Rami, JF ;
Trouche, G ;
Hamon, P .
THEORETICAL AND APPLIED GENETICS, 1999, 98 (02) :320-328
[3]  
CAUSSE MA, 1994, GENETICS, V138, P1251
[4]   LOCATING GENES ASSOCIATED WITH ROOT MORPHOLOGY AND DROUGHT AVOIDANCE IN RICE VIA LINKAGE TO MOLECULAR MARKERS [J].
CHAMPOUX, MC ;
WANG, G ;
SARKARUNG, S ;
MACKILL, DJ ;
OTOOLE, JC ;
HUANG, N ;
MCCOUCH, SR .
THEORETICAL AND APPLIED GENETICS, 1995, 90 (7-8) :969-981
[5]   A DETAILED RFLP MAP OF SORGHUM-BICOLOR X S-PROPINQUUM, SUITABLE FOR HIGH-DENSITY MAPPING, SUGGESTS ANCESTRAL DUPLICATION OF SORGHUM CHROMOSOMES OR CHROMOSOMAL SEGMENTS [J].
CHITTENDEN, LM ;
SCHERTZ, KF ;
LIN, YR ;
WING, RA ;
PATERSON, AH .
THEORETICAL AND APPLIED GENETICS, 1994, 87 (08) :925-933
[6]   Mapping of post flowering drought resistance traits in grain sorghum: Association between QTLs influencing premature senescence and maturity [J].
Crasta O.R. ;
Xu W.W. ;
Rosenow D.T. ;
Mullet J. ;
Nguyen H.T. .
Molecular and General Genetics MGG, 1999, 262 (3) :579-588
[7]  
Davis GL, 1999, GENETICS, V152, P1137
[8]   Genetic analysis of drought tolerance in maize by molecular markers I. Yield components [J].
Frova, C ;
Krajewski, P ;
di Fonzo, N ;
Villa, M ;
Sari-Gorla, M .
THEORETICAL AND APPLIED GENETICS, 1999, 99 (1-2) :280-288
[9]  
GARDINER JM, 1993, GENETICS, V134, P917
[10]  
HENZELL RG, 1992, AUSTR I AGR SCI OCCA, V68, P355