In situ synthesis of single-phase skutterudite thin films (CoSb3 and IrSb3) by pulsed laser deposition
被引:4
作者:
Caylor, JC
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USAUniv Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
Caylor, JC
[1
]
Stacy, AM
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USAUniv Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
Stacy, AM
[1
]
Bandaru, P
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USAUniv Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
Bandaru, P
[1
]
Sands, T
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USAUniv Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
Sands, T
[1
]
Gronsky, R
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USAUniv Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
Gronsky, R
[1
]
机构:
[1] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
来源:
ADVANCES IN LASER ABLATION OF MATERIALS
|
1998年
/
526卷
关键词:
D O I:
10.1557/PROC-526-399
中图分类号:
T [工业技术];
学科分类号:
08 ;
摘要:
Recent advances in doping and substitutional alloying of bulk skutterudite phases based on the CoAs3 structure have yielded compositions with high thermoelectric figures-of-merit ("ZT"). It is postulated that further enhancements in ZT may be attained in artificially-structured skutterudites by engineering the microstructure to enhance carrier mobility while suppressing the phonon component of the thermal conductivity. This work describes the growth of single-phase skutterudite thin films (CoSb3 and IrSb3) by pulsed laser deposition. A substrate temperature of 250 degrees C has been found to be optimal for the deposition of the skutterudites from stoichiometric targets. Above this temperature, the film is depleted of antimony due to its high vapor pressure. However, when films are grown from antimony-rich targets, the substrate temperature can be increased to at least 350 degrees C without losing the skutterudite phase. Films from both target types were characterized with X-ray diffraction and Rutherford-Back-Scattering (RBS) to reveal structure and stoichiometry. Some preliminary electrical measurements will also be shown.