Patterned block-copolymer-silica mesostructures as host media for the laser dye rhodamine 6G

被引:74
作者
Wirnsberger, G
Yang, PD
Huang, HC
Scott, B
Deng, T
Whitesides, GM
Chmelka, BF
Stucky, GD [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Chem, Santa Barbara, CA 93106 USA
[2] Univ Calif Santa Barbara, Dept Chem Engn, Santa Barbara, CA 93106 USA
[3] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
关键词
D O I
10.1021/jp010958w
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rhodamine 6G-doped mesostructured silica is prepared by an acidic sol-gel route using poly-b-poly(propylene oxide)-b-poly(ethylene oxide) (EOx-POy-EOx) block copolymer surfactants. Using low-refractive-index (n similar to 1.2) mesoporous SiO2 as a support, the synthesis is combined with soft lithography to produce high-quality waveguides. This enables efficient waveguiding in the line-patterned rhodamine 6G-doped mesostructured domains, which have a higher refractive index than both the mesoporous support and cladding. For the structure-directing block copolymer surfactants used, (EO)(20)(PO)(70)(EO)(20) (P123) and (EO)(106)(PO)(70)(EO)(106)(F127), X-ray diffraction patterns and transmission electron microscopy reveal hexagonal mesophases, whose longitudinal cylinder axes are aligned predominantly parallel to the substrate plane. For samples made by micromolding-in-capillaries (MIMIC), the longitudinal axes are also aligned along the longitudinal waveguide axes. Samples made by micromolding also possess a high mesostructural order, though in the absence of an aligning flow field, their long-range order (ca. several hundred nanometers) is lower than for samples processed using the MIMIC technique. When optically pumped, the rhodamine 6G-doped waveguides exhibit amplified spontaneous emission with thresholds as low as similar to6 kW cm(-2), substantially lower than rhodamine 6G-doped sol-gel glasses. This is attributed to the ability of the polymeric surfactant to coassemble with the dye molecules, thereby leading to high dye dispersions and reduced dye dimerization. Additionally, rhodamine 6G shows good photostability in the mesostructured waveguides, similar to that of rhodamine 6G in organically modified silicates.
引用
收藏
页码:6307 / 6313
页数:7
相关论文
共 62 条
[1]   Biomimetic pathways for assembling inorganic thin films [J].
Aksay, IA ;
Trau, M ;
Manne, S ;
Honma, I ;
Yao, N ;
Zhou, L ;
Fenter, P ;
Eisenberger, PM ;
Gruner, SM .
SCIENCE, 1996, 273 (5277) :892-898
[2]   THE NATURE OF THE SILICA CAGE AS REFLECTED BY SPECTRAL CHANGES AND ENHANCED PHOTOSTABILITY OF TRAPPED RHODAMINE-6G [J].
AVNIR, D ;
LEVY, D ;
REISFELD, R .
JOURNAL OF PHYSICAL CHEMISTRY, 1984, 88 (24) :5956-5959
[3]   TEMPLATING OF MESOPOROUS MOLECULAR-SIEVES BY NONIONIC POLYETHYLENE OXIDE SURFACTANTS [J].
BAGSHAW, SA ;
PROUZET, E ;
PINNAVAIA, TJ .
SCIENCE, 1995, 269 (5228) :1242-1244
[4]   A NEW FAMILY OF MESOPOROUS MOLECULAR-SIEVES PREPARED WITH LIQUID-CRYSTAL TEMPLATES [J].
BECK, JS ;
VARTULI, JC ;
ROTH, WJ ;
LEONOWICZ, ME ;
KRESGE, CT ;
SCHMITT, KD ;
CHU, CTW ;
OLSON, DH ;
SHEPPARD, EW ;
MCCULLEN, SB ;
HIGGINS, JB ;
SCHLENKER, JL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1992, 114 (27) :10834-10843
[5]   Voids in variable chemical surroundings: Mesoporous metal oxides [J].
Behrens, P .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH, 1996, 35 (05) :515-518
[6]   Stimulated emission and lasing in dye-doped organic thin films with Forster transfer [J].
Berggren, M ;
Dodabalapur, A ;
Slusher, RE .
APPLIED PHYSICS LETTERS, 1997, 71 (16) :2230-2232
[7]   Mesoporous silica synthesized by solvent evaporation: Spun fibers and spray-dried hollow spheres [J].
Bruinsma, PJ ;
Kim, AY ;
Liu, J ;
Baskaran, S .
CHEMISTRY OF MATERIALS, 1997, 9 (11) :2507-2512
[8]   CERAMIC THIN-FILM FORMATION ON FUNCTIONALIZED INTERFACES THROUGH BIOMIMETIC PROCESSING [J].
BUNKER, BC ;
RIEKE, PC ;
TARASEVICH, BJ ;
CAMPBELL, AA ;
FRYXELL, GE ;
GRAFF, GL ;
SONG, L ;
LIU, J ;
VIRDEN, JW ;
MCVAY, GL .
SCIENCE, 1994, 264 (5155) :48-55
[9]   From microporous to mesoporous molecular sieve materials and their use in catalysis [J].
Corma, A .
CHEMICAL REVIEWS, 1997, 97 (06) :2373-2419
[10]  
Dag Ö, 1999, ADV MATER, V11, P474, DOI 10.1002/(SICI)1521-4095(199904)11:6<474::AID-ADMA474>3.0.CO