On nonlinear control design for autonomous chaotic systems of integer and fractional orders

被引:130
作者
Ahmad, WM
Harb, AM
机构
[1] Univ Sharjah, Sharjah, U Arab Emirates
[2] Jordan Univ Sci & Technol, Dept Elect Engn, Irbid, Jordan
关键词
D O I
10.1016/S0960-0779(02)00644-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper; we address the problem of chaos control for autonomous nonlinear chaotic systems. We use the recursive "backstepping" method of nonlinear control design to derive the nonlinear controllers. The controller effect is to stabilize the output chaotic trajectory by driving it to the nearest equilibrium, point in the basin of attraction. We study two nonlinear chaotic systems: an electronic chaotic oscillator model, and a mechanical chaotic "jerk" model. We demonstrate the robustness of the derived controllers against system order reduction arising from the use of fractional integrators in the system models. Our results are validated via nume ical simulations. (C) 2003 Elsevier- Science Ltd. All rights reserved.
引用
收藏
页码:693 / 701
页数:9
相关论文
共 22 条
[1]   LOCAL FEEDBACK STABILIZATION AND BIFURCATION CONTROL .1. HOPF-BIFURCATION [J].
ABED, EH ;
FU, JH .
SYSTEMS & CONTROL LETTERS, 1986, 7 (01) :11-17
[2]   LOCAL FEEDBACK STABILIZATION AND BIFURCATION CONTROL .2. STATIONARY BIFURCATION [J].
ABED, EH ;
FU, JH .
SYSTEMS & CONTROL LETTERS, 1987, 8 (05) :467-473
[3]   NONLINEAR OSCILLATIONS IN POWER-SYSTEMS [J].
ABED, EH ;
VARAIYA, PP .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 1984, 6 (01) :37-43
[4]  
ABED EH, 1992, P 1992 IEEE INT S CI
[5]   Chaos in fractional-order autonomous nonlinear systems [J].
Ahmad, WM ;
Sprott, JC .
CHAOS SOLITONS & FRACTALS, 2003, 16 (02) :339-351
[6]  
ALASSAF Y, IN PRESS INT J BIFUR
[7]   On the synchronization of a class of electronic circuits that exhibit chaos [J].
Bai, EW ;
Lonngren, KE ;
Sprott, JC .
CHAOS SOLITONS & FRACTALS, 2002, 13 (07) :1515-1521
[9]  
CUOMO K, 1993, IEEE T CIRC SYST 2, V40
[10]  
ELWAKIL AS, 2001, IEEE T CIRC SYST, V48