Understanding GFP chromophore biosynthesis: Controlling backbone cyclization and modifying post-translational chemistry

被引:66
作者
Barondeau, DP [1 ]
Kassmann, CJ [1 ]
Tainer, JA [1 ]
Getzoff, ED [1 ]
机构
[1] Scripps Res Inst, Skaggs Inst Chem Biol, Dept Mol Biol, La Jolla, CA 92037 USA
关键词
D O I
10.1021/bi0479205
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The Aequorea victoria green fluorescent protein (GFP) undergoes a remarkable post-translational modification to create a chromophore out of its component amino acids S65, Y66, and G67. Here, we describe mutational experiments in GFP designed to convert this chromophore into a 4-methylideneimidazole-5-one (MIO) moiety similar to the post-translational active-site electrophile of histidine ammonia lyase (HAL). Crystallographic structures of GFP variant S65A Y66S (GFPhal) and of four additional related site-directed mutants reveal an aromatic MIO moiety and mechanistic details of GFP chromophore formation and MIO biosynthesis. Specifically, the GFP scaffold promotes backbone cyclization by (1) favoring nucleophilic attack by close proximity alignment of the G67 amide lone pair with the pi* orbital of the residue 65 carbonyl and (2) removing enthalpic barriers by eliminating inhibitory main-chain hydrogen bonds in the precursor state. GFP R96 appears to induce structural rearrangements important in aligning the molecular orbitals for ring cyclization, favor G67 nitrogen deprotonation through electrostatic interactions with the Y66 carbonyl, and stabilize the reduced enolate intermediate. Our structures and analysis also highlight negative design features of the wild-type GFP architecture, which favor chromophore formation by destabilizing alternative conformations of the chromophore tripeptide. By providing a molecular basis for understanding and controlling the driving force and protein chemistry of chromophore creation, this research has implications for expansion of the genetic code through engineering of modified amino acids.
引用
收藏
页码:1960 / 1970
页数:11
相关论文
共 43 条
[1]   Structures of two histidine ammonia-lyase modifications and implications for the catalytic mechanism [J].
Baedeker, M ;
Schulz, GE .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 2002, 269 (06) :1790-1797
[2]   Autocatalytic peptide cyclization during chain folding of histidine ammonia-lyase [J].
Baedeker, M ;
Schulz, GE .
STRUCTURE, 2002, 10 (01) :61-67
[3]   Mechanism and energetics of green fluorescent protein chromophore synthesis revealed by trapped intermediate structures [J].
Barondeau, DP ;
Putnam, CD ;
Kassmann, CJ ;
Tainer, JA ;
Getzoff, ED .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (21) :12111-12116
[4]   Structural chemistry of a green fluorescent protein Zn biosensor [J].
Barondeau, DP ;
Kassmann, CJ ;
Tainer, JA ;
Getzoff, ED .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (14) :3522-3524
[5]   A computational analysis of the unique protein-induced tight turn that results in posttranslational chromophore formation in green fluorescent protein [J].
Branchini, BR ;
Nemser, AR ;
Zimmer, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (01) :1-6
[6]   FREE R-VALUE - A NOVEL STATISTICAL QUANTITY FOR ASSESSING THE ACCURACY OF CRYSTAL-STRUCTURES [J].
BRUNGER, AT .
NATURE, 1992, 355 (6359) :472-475
[7]  
Brunger AT, 1998, ACTA CRYSTALLOGR D, V54, P905, DOI 10.1107/s0907444998003254
[8]   Human glutathione transferase A4-4 crystal structures and mutagenesis reveal the basis of high catalytic efficiency with toxic lipid peroxidation products [J].
Bruns, CM ;
Hubatsch, I ;
Ridderström, M ;
Mannervik, B ;
Tainer, JA .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 288 (03) :427-439
[9]   Crystal structure of phenylalanine ammonia lyase: Multiple helix dipoles implicated in catalysis [J].
Calabrese, JC ;
Jordan, DB ;
Boodhoo, A ;
Sariaslani, S ;
Vannelli, T .
BIOCHEMISTRY, 2004, 43 (36) :11403-11416
[10]   A novel 4-methylideneimidazole-5-one-containing tyrosine aminomutase in enediyne antitumor antibiotic C-1027 biosynthesis [J].
Christenson, SD ;
Liu, W ;
Toney, MD ;
Shen, B .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (20) :6062-6063