Noise removal with Gauss curvature-driven diffusion

被引:76
作者
Lee, SH [1 ]
Seo, JK [1 ]
机构
[1] Yonsei Univ, Dept Math, Seoul 120749, South Korea
关键词
Gauss curvature; noise removal; nonlinear partial differential equation (PDE;
D O I
10.1109/TIP.2005.849294
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose the use of the Gauss curvature in a Gauss curvature-driven diffusion equation for noise removal. The proposed scheme uses the Gauss curvature as the conductance term and controls the amount of diffusion. The main advantage of the scheme is that it preserves important structures, such as straight edges, curvy edges, ramps, corners, small-scaled features, etc.
引用
收藏
页码:904 / 909
页数:6
相关论文
共 13 条
[1]   IMAGE SELECTIVE SMOOTHING AND EDGE-DETECTION BY NONLINEAR DIFFUSION .2. [J].
ALVAREZ, L ;
LIONS, PL ;
MOREL, JM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (03) :845-866
[2]  
Chan TF, 2003, SIAM J APPL MATH, V63, P564
[3]   Mean curvature evolution and surface area scaling in image filtering [J].
ElFallah, AI ;
Ford, GE .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1997, 6 (05) :750-753
[4]  
ELFALLAH AI, 1994, IEEE IMAGE PROC, P298, DOI 10.1109/ICIP.1994.413323
[5]  
GRAYSON MA, 1986, J DIFFER GEOM, V26, P69
[6]   A unified approach to noise removal, image enhancement, and shape recovery [J].
Malladi, R ;
Sethian, JA .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1996, 5 (11) :1554-1568
[7]   SCALE-SPACE AND EDGE-DETECTION USING ANISOTROPIC DIFFUSION [J].
PERONA, P ;
MALIK, J .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1990, 12 (07) :629-639
[8]  
Rudin L. I., 1994, Proceedings ICIP-94 (Cat. No.94CH35708), P31, DOI 10.1109/ICIP.1994.413269
[9]   NONLINEAR TOTAL VARIATION BASED NOISE REMOVAL ALGORITHMS [J].
RUDIN, LI ;
OSHER, S ;
FATEMI, E .
PHYSICA D, 1992, 60 (1-4) :259-268
[10]  
SAPIRO G, 1993, C INF SCI SYST MAR