Evidence for functional overlap among multiple bacterial cell division proteins: compensating for the loss of FtsK

被引:99
作者
Geissler, B [1 ]
Margolin, W [1 ]
机构
[1] Univ Texas, Sch Med, Dept Microbiol & Mol Genet, Houston, TX 77030 USA
关键词
D O I
10.1111/j.1365-2958.2005.04858.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In Escherichia coli, at least 12 proteins colocalize to the cell midpoint, assembling into a membrane-associated protein machine that forms the division septum. Many of these proteins, including FtsK, are essential for viability but their functions in cell division are unknown. Here we show that the essential function of FtsK in cell division can be partially bypassed. Cells containing either the ftsA R286W mutation or a plasmid carrying the ftsQAZ genes suppressed a ftsK44(ts) allele efficiently. Moreover, ftsA R286W or multicopy ftsQAZ, which can largely bypass the requirement for the essential cell division gene zipA, allowed cells with a complete deletion of ftsK to survive and divide, although many of these ftsK null cells formed multiseptate chains. Green fluorescent protein (GFP) fusions to FtsI and FtsN, which normally depend on FtsK to localize to division sites, localized to division sites in the absence of FtsK, indicating that FtsK is not directly involved in their recruitment. Cells expressing additional ftsQ, and to a lesser extent ftsB and ftsN, were able to survive and divide in the absence of ftsK, although cell chains were often formed. Surprisingly, the cytoplasmic and transmembrane domains of FtsQ, while not sufficient to complement an ftsQ null mutant, conferred viability and septum formation in the absence of ftsK. These findings suggest that the N-terminal domain of FtsK is normally involved in stability of the division protein machine and shares functional overlap with FtsQ, FtsB, FtsA, ZipA and FtsN.
引用
收藏
页码:596 / 612
页数:17
相关论文
共 57 条
[1]   Maturation of the Escherichia coli divisome occurs in two steps [J].
Aarsman, MEG ;
Piette, A ;
Fraipont, C ;
Vinkenvleugel, TMF ;
Nguyen-Distèche, M ;
den Blaauwen, T .
MOLECULAR MICROBIOLOGY, 2005, 55 (06) :1631-1645
[2]   FtsK is a DNA motor protein that activates chromosome dimer resolution by switching the catalytic state of the XerC and XerD recombinases [J].
Aussel, L ;
Barre, FX ;
Aroyo, M ;
Stasiak, A ;
Stasiak, AZ ;
Sherratt, D .
CELL, 2002, 108 (02) :195-205
[3]   Roles of FtsA and FtsZ in activation of division sites [J].
Begg, K ;
Nikolaichik, Y ;
Crossland, N ;
Donachie, WD .
JOURNAL OF BACTERIOLOGY, 1998, 180 (04) :881-884
[4]   A NEW ESCHERICHIA-COLI CELL-DIVISION GENE, FTSK [J].
BEGG, KJ ;
DEWAR, SJ ;
DONACHIE, WD .
JOURNAL OF BACTERIOLOGY, 1995, 177 (21) :6211-6222
[5]   IDENTIFICATION OF NEW GENES IN A CELL-ENVELOPE CELL-DIVISION GENE-CLUSTER OF ESCHERICHIA-COLI - CELL-DIVISION GENE FTSQ [J].
BEGG, KJ ;
HATFULL, GF ;
DONACHIE, WD .
JOURNAL OF BACTERIOLOGY, 1980, 144 (01) :435-437
[6]   The Escherichia coli amidase AmiC is a periplasmic septal ring component exported via the twin-arginine transport pathway [J].
Bernhardt, TG ;
de Boer, PAJ .
MOLECULAR MICROBIOLOGY, 2003, 48 (05) :1171-1182
[7]   FTSZ REGULATES FREQUENCY OF CELL-DIVISION IN ESCHERICHIA-COLI [J].
BI, E ;
LUTKENHAUS, J .
JOURNAL OF BACTERIOLOGY, 1990, 172 (05) :2765-2768
[8]   FTSZ RING STRUCTURE ASSOCIATED WITH DIVISION IN ESCHERICHIA-COLI [J].
BI, E ;
LUTKENHAUS, J .
NATURE, 1991, 354 (6349) :161-164
[9]   FtsK activities in Xer recombination, DNA mobilization and cell division involve overlapping and separate domains of the protein [J].
Bigot, S ;
Corre, J ;
Louarn, JM ;
Cornet, F ;
Barre, FX .
MOLECULAR MICROBIOLOGY, 2004, 54 (04) :876-886
[10]   A complex of the Escherichia coli cell division proteins FtsL, FtsB and FtsQ forms independently of its localization to the septal region [J].
Buddelmeijer, N ;
Beckwith, J .
MOLECULAR MICROBIOLOGY, 2004, 52 (05) :1315-1327