Flexible energy storage devices based on nanocomposite paper

被引:939
作者
Pushparaj, Victor L.
Shaijumon, M. Manikoth
Kumar, Ashavani
Murugesan, Saravanababu
Ci, Lijie
Vajtai, Robert
Linhardt, Robert J.
Nalamasu, Omkaram
Ajayan, Pulickel M. [1 ]
机构
[1] Rensselaer Polytech Inst, Dept Mat Sci & Engn, Troy, NY 12180 USA
[2] Rensselaer Polytech Inst, Dept Biol & Chem Engn, Troy, NY 12180 USA
[3] Rensselaer Polytech Inst, Ctr Biotechnol & Interdisciplinary Studies, Troy, NY 12180 USA
[4] Rensselaer Polytech Inst, Renssalaer Nanotechnol Ctr, Troy, NY 12180 USA
关键词
batteries; carbon nanotubes; supercapacitor;
D O I
10.1073/pnas.0706508104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
There is strong recent interest in ultrathin, flexible, safe energy storage devices to meet the various design and power needs of modern gadgets. To build such fully flexible and robust electrochemical devices, multiple components with specific electrochemical and interfacial properties need to be integrated into single units. Here we show that these basic components, the electrode, separator, and electrolyte, can all be integrated into single contiguous nanocomposite units that can serve as building blocks for a variety of thin mechanically flexible energy storage devices. Nanoporous cellulose paper embedded with aligned carbon nanotube electrode and electrolyte constitutes the basic unit. The units are used to build various flexible supercapacitor, battery, hybrid, and dual-storage battery-in-supercapacitor devices. The thin freestanding nanocomposite paper devices offer complete mechanical flexibility during operation. The supercapacitors operate with electrolytes including aqueous solvents, room temperature ionic liquids, and bioelectrolytes and over record temperature ranges. These easy-to-assemble integrated nanocomposite energy-storage systems could provide unprecedented design ingenuity for a variety of devices operating over a wide range of temperature and environmental conditions.
引用
收藏
页码:13574 / 13577
页数:4
相关论文
共 27 条
[1]   An asymmetric hybrid nonaqueous energy storage cell [J].
Amatucci, GG ;
Badway, F ;
Du Pasquier, A ;
Zheng, T .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (08) :A930-A939
[2]  
ANANI AA, 2000, Patent No. 6117585
[3]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[4]   Ultracapacitors: why, how, and where is the technology [J].
Burke, A .
JOURNAL OF POWER SOURCES, 2000, 91 (01) :37-50
[5]   Carbon nanotubule membranes for electrochemical energy storage and production [J].
Che, GL ;
Lakshmi, BB ;
Fisher, ER ;
Martin, CR .
NATURE, 1998, 393 (6683) :346-349
[6]  
Conway B. E., 1999, ELECTROCHEMICAL CAPA
[7]   Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices [J].
Conway, BE ;
Pell, WG .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2003, 7 (09) :637-644
[8]   Alternative energy technologies [J].
Dresselhaus, MS ;
Thomas, IL .
NATURE, 2001, 414 (6861) :332-337
[9]   Vapor-grown carbon fibers (VGCFs) - Basic properties and their battery applications [J].
Endo, M ;
Kim, YA ;
Hayashi, T ;
Nishimura, K ;
Matusita, T ;
Miyashita, K ;
Dresselhaus, MS .
CARBON, 2001, 39 (09) :1287-1297
[10]   Electrochemical storage of lithium multiwalled carbon nanotubes [J].
Frackowiak, E ;
Gautier, S ;
Gaucher, H ;
Bonnamy, S ;
Beguin, F .
CARBON, 1999, 37 (01) :61-69