Closed-Path J-Integral Analysis of Bridged and Phase-Field Cracks

被引:9
作者
Ballarini, Roberto [1 ]
Royer-Carfagni, Gianni [2 ]
机构
[1] Univ Houston, Dept Civil & Environm Engn, Houston, TX 77004 USA
[2] Univ Parma, Dept Ind Engn, I-43124 Parma, Italy
来源
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME | 2016年 / 83卷 / 06期
基金
美国国家科学基金会;
关键词
fracture; cohesive fracture; phase-field model; J-integral; Eshelby tensor; energy release rate; small-scale bridging limit; CONFIGURATIONAL FORCES; BRITTLE-FRACTURE; LAWS; APPROXIMATION; MECHANICS; TENSOR;
D O I
10.1115/1.4032986
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We extend the classical J-integral approach to calculate the energy release rate of cracks by prolonging the contour path of integration across a traction-transmitting interphase that accounts for various phenomena occurring within the gap region defined by the nominal crack surfaces. Illustrative examples show how the closed contours, together with a proper definition of the energy momentum tensor, account for the energy dissipation associated with material separation. For cracks surfaces subjected to cohesive forces, the procedure directly establishes an energetic balance a la Griffith. For cracks modeled as phase-fields, for which no neat material separation occurs, integration of a generalized energy momentum (GEM) tensor along the closed contour path that traverses the damaged material permits the calculation of the energy release rate and the residual elasticity of the completely damaged material.
引用
收藏
页数:13
相关论文
共 26 条
[1]   APPROXIMATION OF FUNCTIONALS DEPENDING ON JUMPS BY ELLIPTIC FUNCTIONALS VIA GAMMA-CONVERGENCE [J].
AMBROSIO, L ;
TORTORELLI, VM .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1990, 43 (08) :999-1036
[2]   THEORY OF MULTIPLE FRACTURE OF FIBROUS COMPOSITES [J].
AVESTON, J ;
KELLY, A .
JOURNAL OF MATERIALS SCIENCE, 1973, 8 (03) :352-362
[3]  
Barenblatt G.I., 1962, The mathematical theory of equilibrium cracks in brittle fracture, V7, P55, DOI [10.1016/S0065-2156, DOI 10.1016/S0065-2156, DOI 10.1016/S0065-2156(08)70121-2]
[4]   Cohesive modeling of crack nucleation in a cylindrical electrode under axisymmetric diffusion induced stresses [J].
Bhandakkar, Tanmay K. ;
Gao, Huajian .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2011, 48 (16-17) :2304-2309
[5]   Numerical experiments in revisited brittle fracture [J].
Bourdin, B ;
Francfort, GA ;
Marigo, JJ .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2000, 48 (04) :797-826
[6]   OVERVIEW NO 111 - CONCEPTS FOR BRIDGED CRACKS IN FRACTURE AND FATIGUE [J].
COX, BN ;
MARSHALL, DB .
ACTA METALLURGICA ET MATERIALIA, 1994, 42 (02) :341-363
[7]   Sharp-crack limit of a phase-field model for brittle fracture [J].
da Silva, Milton N., Jr. ;
Duda, Fernando P. ;
Fried, Eliot .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2013, 61 (11) :2178-2195
[8]   ELASTIC ENERGY-MOMENTUM TENSOR [J].
ESHELBY, JD .
JOURNAL OF ELASTICITY, 1975, 5 (3-4) :321-335
[10]   On the variational approximation of free-discontinuity problems in the vectorial case [J].
Focardi, M .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2001, 11 (04) :663-684