Cloning, expression, and purification of a catalytic fragment of Moloney murine leukemia virus reverse transcriptase: Crystallization of nucleic acid complexes

被引:27
作者
Sun, DM
Jessen, S
Liu, CH
Liu, XP
Najmudin, S
Georgiadis, MM
机构
[1] Rutgers State Univ, Waksman Inst, Piscataway, NJ 08854 USA
[2] Rutgers State Univ, Dept Chem, Piscataway, NJ 08854 USA
关键词
complex; crystallization; DNA; Moloney murine leukemia virus; nucleic acid; polymerase; reverse transcriptase;
D O I
10.1002/pro.5560070711
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Reverse transcriptase is an essential retroviral enzyme that uses RNA- and DNA-directed DNA polymerase activities as well as an RNaseH activity to synthesize a double-stranded DNA copy of the single-stranded RNA genome. Ln an effort to obtain high-resolution structural information regarding the polymerase active site of reverse transcriptase, we have pursued studies on a catalytic fragment from Moloney murine leukemia Virus reverse transcriptase. DNA encoding the catalytic fragment, defined originally by limited proteolytic digestion, has been cloned, and the protein has been expressed and purified from Escherichia coli. The fragment obtained by limited proteolytic digestion and the bacterially expressed fragment retain polymerase activity. Crystallization studies involving nucleic acid complexes with a catalytic fragment from both sources are reported, including variables screened to improve crystals and cryocooling. Three crystal forms of catalytic fragment-nucleic acid complexes have been characterized, which all contain at least two protein molecules in the asymmetric unit. As isolated, the catalytic fragment is monomeric. This analysis indicates that the enzyme dimerizes in the presence of nucleic acid.
引用
收藏
页码:1575 / 1582
页数:8
相关论文
共 33 条
[1]  
AGGARWAL A K, 1990, Methods (Orlando), V1, P83, DOI 10.1016/S1046-2023(05)80150-1
[2]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[3]   IMPROVED SILVER STAINING OF PLANT-PROTEINS, RNA AND DNA IN POLYACRYLAMIDE GELS [J].
BLUM, H ;
BEIER, H ;
GROSS, HJ .
ELECTROPHORESIS, 1987, 8 (02) :93-99
[4]  
CARTER CW, 1979, J BIOL CHEM, V254, P2219
[5]   STRUCTURE OF HIV-1 REVERSE-TRANSCRIPTASE IN A COMPLEX WITH THE NONNUCLEOSIDE INHIBITOR ALPHA-APA-R-95845 AT 2.8-ANGSTROM RESOLUTION [J].
DING, J ;
DAS, K ;
TANTILLO, C ;
ZHANG, W ;
CLARK, AD ;
JESSEN, S ;
LU, X ;
HSIOU, Y ;
JACOBOMOLINA, A ;
ANDRIES, K ;
PAUWELS, R ;
MOEREELS, H ;
KOYMANS, L ;
JANSSEN, PAJ ;
SMITH, RH ;
KOEPKE, MK ;
MICHEJDA, CJ ;
HUGHES, SH ;
ARNOLD, E .
STRUCTURE, 1995, 3 (04) :365-379
[6]   STRUCTURE OF HIV-1 RT/TIBO R-86183 COMPLEX REVEALS SIMILARITY IN THE BINDING OF DIVERSE NONNUCLEOSIDE INHIBITORS [J].
DING, JP ;
DAS, K ;
MOEREELS, H ;
KOYMANS, L ;
ANDRIES, K ;
JANSSEN, PAJ ;
HUGHES, SH ;
ARNOLD, E .
NATURE STRUCTURAL BIOLOGY, 1995, 2 (05) :407-415
[7]   MECHANISM OF INHIBITION OF HIV-1 REVERSE-TRANSCRIPTASE BY NONNUCLEOSIDE INHIBITORS [J].
ESNOUF, R ;
REN, JS ;
ROSS, C ;
JONES, Y ;
STAMMERS, D ;
STUART, D .
NATURE STRUCTURAL BIOLOGY, 1995, 2 (04) :303-308
[8]   TRUNCATED STAPHYLOCOCCAL NUCLEASE IS COMPACT BUT DISORDERED [J].
FLANAGAN, JM ;
KATAOKA, M ;
SHORTLE, D ;
ENGELMAN, DM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (02) :748-752
[9]   MECHANISTIC IMPLICATIONS FROM THE STRUCTURE OF A CATALYTIC FRAGMENT OF MOLONEY MURINE LEUKEMIA-VIRUS REVERSE-TRANSCRIPTASE [J].
GEORGIADIS, MM ;
JESSEN, SM ;
OGATA, CM ;
TELESNITSKY, A ;
GOFF, SP ;
HENDRICKSON, WA .
STRUCTURE, 1995, 3 (09) :879-892
[10]   DETAILED MODEL OF REVERSE TRANSCRIPTION AND TESTS OF CRUCIAL ASPECTS [J].
GILBOA, E ;
MITRA, SW ;
GOFF, S ;
BALTIMORE, D .
CELL, 1979, 18 (01) :93-100