Profile-profile comparisons by COMPASS predict intricate homologies between protein families

被引:36
作者
Sadreyev, RI
Baker, D
Grishin, NV
机构
[1] Univ Texas, SW Med Ctr, Dept Biochem, Dallas, TX 75390 USA
[2] Univ Texas, SW Med Ctr, Howard Hughes Med Inst, Dallas, TX 75390 USA
[3] Univ Washington, Dept Biochem, Seattle, WA 98195 USA
[4] Univ Washington, Howard Hughes Med Inst, Seattle, WA 98195 USA
关键词
protein structure prediction; COMPASS; ROSETTA; domains of unknown function; helix-turn-helix; rRNA methylase; PPR; viral coat proteins;
D O I
10.1110/ps.03197403
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recently we proposed a novel method of alignment-alignment comparison, COMPASS (the tool for COmparison of Multiple Protein Alignments with Assessment of Statistical Significance). Here we present several examples of the relations between PFAM protein families that were detected by COMPASS and that lead to the predictions of presently unresolved protein structures. We discuss relatively straightforward COMPASS predictions that are new and interesting to us, and that would require a substantial time and effort to justify even for a skilled PSI-BLAST user. All of the presented COMPASS hits are independently confirmed by other methods, including the ab initio structure-prediction method ROSETTA. The tertiary structure predictions made by ROSETTA proved to be useful for improving sequence-derived alignments, because they are based on a reasonable folding of the polypeptide chain rather than on the information from sequence databases. The ability of COMPASS to predict new relations within the PFAM database indicates the high sensitivity of COMPASS searches and substantiates its potential value for the discovery of previously unknown similarities between protein families.
引用
收藏
页码:2262 / 2272
页数:11
相关论文
共 44 条
[1]   Structural similarity to link sequence space: New potential superfamilies and implications for structural genomics [J].
Aloy, P ;
Oliva, B ;
Querol, E ;
Aviles, FX ;
Russell, RB .
PROTEIN SCIENCE, 2002, 11 (05) :1101-1116
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]   Protein repeats: Structures, functions, and evolution [J].
Andrade, MA ;
Perez-Iratxeta, C ;
Ponting, CP .
JOURNAL OF STRUCTURAL BIOLOGY, 2001, 134 (2-3) :117-131
[4]   Proteolytic processing of the astrovirus capsid [J].
Bass, DM ;
Qiu, SQ .
JOURNAL OF VIROLOGY, 2000, 74 (04) :1810-1814
[5]  
Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkp985, 10.1093/nar/gkh121, 10.1093/nar/gkr1065]
[6]   Pfam 3.1: 1313 multiple alignments and profile HMMs match the majority of proteins [J].
Bateman, A ;
Birney, E ;
Durbin, R ;
Eddy, SR ;
Finn, RD ;
Sonnhammer, ELL .
NUCLEIC ACIDS RESEARCH, 1999, 27 (01) :260-262
[7]  
Blatch GL, 1999, BIOESSAYS, V21, P932, DOI 10.1002/(SICI)1521-1878(199911)21:11<932::AID-BIES5>3.3.CO
[8]  
2-E
[9]  
Bonneau R, 2001, PROTEINS, P119
[10]   Sialidase-like Asp-boxes: Sequence-similar structures within different protein folds [J].
Copley, RR ;
Russell, RB ;
Ponting, CP .
PROTEIN SCIENCE, 2001, 10 (02) :285-292