Lineage-specific gene expansions in bacterial and archaeal genomes

被引:141
作者
Jordan, IK
Makarova, KS
Spouge, JL
Wolf, YI
Koonin, EV [1 ]
机构
[1] NIH, Natl Ctr Biotechnol Informat, Natl Lib Med, Bethesda, MD 20894 USA
[2] Uniformed Serv Univ Hlth Sci, Bethesda, MD 20894 USA
[3] Russian Acad Sci, Inst Cytol & Genet, Novosibirsk 630090, Russia
关键词
D O I
10.1101/gr.GR-1660R
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Gene duplication is an important mechanistic antecedent to the evolution of new genes and novel biochemical functions. In an attempt to assess the contribution of gene duplication to genome evolution in archaea and bacteria, clusters of related genes that appear to have expanded subsequent to the diversification of the major prokaryotic lineages (lineage-specific expansions) were analyzed. Analysis of 21 completely sequenced prokaryotic genomes shows that lineage-specific expansions comprise a substantial fraction (similar to5%-33%) of their coding capacities. A positive correlation exists between the fraction of the genes taken up by lineage-specific expansions and the total number of genes in a genome. Consistent with the notion that lineage-specific expansions are made up of relatively recently duplicated genes, >90% of the detected clusters consists of only two to four genes. The more common smaller clusters tend to include genes with higher pairwise similarity (as reflected by average score density) than larger clusters. Regardless of size, cluster members tend to be located more closely on bacterial chromosomes than expected by chance, which could reflect a history of tandem gene duplication. In addition to the small clusters, almost all genomes also contain rare large clusters of size greater than or equal to 20. Several examples of the potential adaptive significance of these large clusters are explored. The presence or absence of clusters and their related genes was used as the basis for the construction of a similarity graph for completely sequenced prokaryotic genomes. The topology of the resulting graph seems to reflect a combined effect of common ancestry, horizontal transfer,and lineage-specific gene loss.
引用
收藏
页码:555 / 565
页数:11
相关论文
共 51 条
[1]   Comparative genomics of Helicobacter pylori:: Analysis of the outer membrane protein families [J].
Alm, RA ;
Bina, J ;
Andrews, BM ;
Doig, P ;
Hancock, REW ;
Trust, TJ .
INFECTION AND IMMUNITY, 2000, 68 (07) :4155-4168
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]   Evidence for massive gene exchange between archaeal and bacterial hyperthermophiles [J].
Aravind, L ;
Tatusov, RL ;
Wolf, YI ;
Walker, DR ;
Koonin, EV .
TRENDS IN GENETICS, 1998, 14 (11) :442-444
[4]   CLONING OF AN MYCOBACTERIUM-TUBERCULOSIS DNA FRAGMENT ASSOCIATED WITH ENTRY AND SURVIVAL INSIDE CELLS [J].
ARRUDA, S ;
BOMFIM, G ;
KNIGHTS, R ;
HUIMABYRON, T ;
RILEY, LW .
SCIENCE, 1993, 261 (5127) :1454-1457
[5]   Combining evidence using p-values: application to sequence homology searches [J].
Bailey, TL ;
Gribskov, M .
BIOINFORMATICS, 1998, 14 (01) :48-54
[6]   COMPARISON OF THE ABILITY OF MYCOBACTERIUM-AVIUM, MYCOBACTERIUM-SMEGMATIS AND MYCOBACTERIUM-TUBERCULOSIS TO INVADE AND REPLICATE WITHIN HEP-2 EPITHELIAL-CELLS [J].
BERMUDEZ, LE ;
SHELTON, K ;
YOUNG, LS .
TUBERCLE AND LUNG DISEASE, 1995, 76 (03) :240-247
[7]   GENE DUPLICATIONS IN HAEMOPHILUS-INFLUENZAE [J].
BRENNER, SE ;
HUBBARD, T ;
MURZIN, A ;
CHOTHIA, C .
NATURE, 1995, 378 (6553) :140-140
[8]   PROTEINS - 1000 FAMILIES FOR THE MOLECULAR BIOLOGIST [J].
CHOTHIA, C .
NATURE, 1992, 357 (6379) :543-544
[9]   Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence [J].
Cole, ST ;
Brosch, R ;
Parkhill, J ;
Garnier, T ;
Churcher, C ;
Harris, D ;
Gordon, SV ;
Eiglmeier, K ;
Gas, S ;
Barry, CE ;
Tekaia, F ;
Badcock, K ;
Basham, D ;
Brown, D ;
Chillingworth, T ;
Connor, R ;
Davies, R ;
Devlin, K ;
Feltwell, T ;
Gentles, S ;
Hamlin, N ;
Holroyd, S ;
Hornby, T ;
Jagels, K ;
Krogh, A ;
McLean, J ;
Moule, S ;
Murphy, L ;
Oliver, K ;
Osborne, J ;
Quail, MA ;
Rajandream, MA ;
Rogers, J ;
Rutter, S ;
Seeger, K ;
Skelton, J ;
Squares, R ;
Squares, S ;
Sulston, JE ;
Taylor, K ;
Whitehead, S ;
Barrell, BG .
NATURE, 1998, 393 (6685) :537-+
[10]   Whole genome-based phylogenetic analysis of free-living microorganisms [J].
Fitz-Gibbon, ST ;
House, CH .
NUCLEIC ACIDS RESEARCH, 1999, 27 (21) :4218-4222