Composition- and shape-controlled synthesis and optical properties of ZnxCd1-xS alloyed nanocrystals

被引:119
作者
Li, YC [1 ]
Ye, MF
Yang, CH
Li, XH
Li, YF
机构
[1] Chinese Acad Sci, Inst Chem, Ctr Mol Sci, CAS Key Lab Organ Solids, Beijing 100080, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China
关键词
D O I
10.1002/adfm.200400320
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Composition-tunable ZnxCd1-xS alloyed nanocrystals have been synthesized by a new approach consisting of thermolyzing a mixture of cadmium ethylxanthate (Cd(exan)(2)) and zinc ethylxanthate (Zn(exan)(2)) precursors in hot, coordinating solvents at relatively low temperatures (180-210 degrees C). The composition of the alloyed nanocrystals was accurately adjusted by controlling the molar ratio of Cd(exan)(2) to Zn(exan)(2) in the mixed reactants. The alloyed ZnxCd1-xS nanocrystals prepared in HDA/TOP (HDA: hexadecylamine; TOP: trioctylphosphine) solution exhibit composition-dependent shape and phase structures as well as composition-dependent optical properties. The shape of the ZnxCd1-xS nanocrystals changed from dot to single-armed rod then to multi-armed rod with a decrease of Zn content in the ternary nanoparticles. The alloying nature of the ZnxCd1-xS nanocrystals was consistently confirmed by the results of high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and UV-vis absorption and photoluminescence (PL) spectroscopy. Further, the shape-controlled synthesis of the ternary alloyed nanocrystals was realized by selecting appropriate solvents. Uniform nanodots in the whole composition range were obtained from TOPO/TOP solution, (TOPO: trioctylphosphine oxide) and uniform nanorods in the whole composition range were prepared from HDA/OA solution (OA: octylamine). The effect of the reaction conditions, such as solvent, reaction temperature, and reaction time, on the PL spectra of the alloyed ZnxCd1-xS nanocrystals was also systematically studied, and the reaction conditions were optimized for improving the PL properties of the nanocrystals.
引用
收藏
页码:433 / 441
页数:9
相关论文
共 44 条
[1]   Alloyed semiconductor quantum dots: Tuning the optical properties without changing the particle size [J].
Bailey, RE ;
Nie, SM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (23) :7100-7106
[2]   THE QUANTUM-MECHANICS OF LARGER SEMICONDUCTOR CLUSTERS (QUANTUM DOTS) [J].
BAWENDI, MG ;
STEIGERWALD, ML ;
BRUS, LE .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1990, 41 :477-496
[3]   Semiconductor nanocrystals as fluorescent biological labels [J].
Bruchez, M ;
Moronne, M ;
Gin, P ;
Weiss, S ;
Alivisatos, AP .
SCIENCE, 1998, 281 (5385) :2013-2016
[4]   Kinetically controlled synthesis of wurtzite ZnS nanorods through mild thermolysis of a covalent organic-inorganic network [J].
Chen, XJ ;
Xu, HF ;
Xu, NS ;
Zhao, FH ;
Lin, WJ ;
Lin, G ;
Fu, YL ;
Huang, ZL ;
Wang, HZ ;
Wu, MM .
INORGANIC CHEMISTRY, 2003, 42 (09) :3100-3106
[5]   Solid solution of CdyZn1-yS nanosized particles: Photophysical properties [J].
Cizeron, J ;
Pileni, MP .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (44) :8887-8891
[6]   Electroluminescence from single monolayers of nanocrystals in molecular organic devices [J].
Coe, S ;
Woo, WK ;
Bawendi, M ;
Bulovic, V .
NATURE, 2002, 420 (6917) :800-803
[7]  
COLVIN VL, 1994, NATURE, V370, P354, DOI 10.1038/370354a0
[8]   (CdSe)ZnS core-shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites [J].
Dabbousi, BO ;
RodriguezViejo, J ;
Mikulec, FV ;
Heine, JR ;
Mattoussi, H ;
Ober, R ;
Jensen, KF ;
Bawendi, MG .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (46) :9463-9475
[9]   Single-step synthesis to control the photoluminescence quantum yield and size dispersion of CdSe nanocrystals [J].
Donegá, CD ;
Hickey, SG ;
Wuister, SF ;
Vanmaekelbergh, D ;
Meijerink, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (02) :489-496
[10]   DILUTED MAGNETIC SEMICONDUCTORS [J].
FURDYNA, JK .
JOURNAL OF APPLIED PHYSICS, 1988, 64 (04) :R29-R64