The maltitol-induced increase in intestinal calcium transport increases the calcium content and breaking force of femoral bone in weanling rats

被引:18
作者
Goda, T [1 ]
Kishi, K
Ezawa, I
Takase, S
机构
[1] Univ Shizuoka, Sch Food & Nutr Sci, Shizuoka 4228526, Japan
[2] Japan Womens Univ, Sch Home Econ, Dept Food & Nutr, Tokyo 112, Japan
关键词
calcium; maltitol; intestinal absorption; bone; rats;
D O I
10.1093/jn/128.11.2028
中图分类号
R15 [营养卫生、食品卫生]; TS201 [基础科学];
学科分类号
100403 ;
摘要
Maltitol is a disaccharide alcohol that is produced by hydrogenation of maltose and exhibits resistance to intestinal disaccharidases. We demonstrated previously that maltitol stimulated transepithelial diffusional calcium transfer in the ileum, accompanied by an elevation of intestinal calcium absorption as well as calcium retention in the body. In this study we examined whether the maltitol-induced increase in the diffusional transfer of intestinal calcium absorption leads to an alteration of the physical properties of bones in the weanling rats which exhibit the maximal level of intestinal active calcium absorption. Rat pups were removed from darns at 24 d of age and were fed the diets containing either maltose (control) or maltitol and a requisite amount of calcium (0.52%) for 21 d. Balance studies performed during the final 5-d period showed that maltitol-fed rats had greater calcium retention and calcium absorption. The breaking force of femoral bones was 13% greater in the rats fed the maltitol diet than in controls. The calcium content and dry weight of both femurs and tibias, as well as the bone mineral density of tibias, were elevated in the rats fed the maltitol diet. In a separate experiment, gastric intubation of maltitol-containing diet increased the serum calcium concentration in the portal vein at 2 and 4 h compared to controls. These results indicate that the maltitol-induced increase in the intestinal calcium absorption through paracellular pathway leads to enhancement of the calcium content and the breaking strength in the bone of weanling rats.
引用
收藏
页码:2028 / 2031
页数:4
相关论文
共 18 条
[1]   ENHANCEMENT OF CA++ UPTAKE BY LACTOSE IN RAT SMALL-INTESTINE [J].
ARMBRECHT, HJ ;
WASSERMAN, RH .
JOURNAL OF NUTRITION, 1976, 106 (09) :1265-1271
[2]  
BRONNER F, 1987, PHYSL GASTROINTESTIN, V2, P1419
[3]  
CONNERTY HV, 1966, AM J CLIN PATHOL, V45, P290
[4]   Sex and strain differences in whole skeletal development in the rat [J].
DeMoss, DL ;
Wright, GL .
CALCIFIED TISSUE INTERNATIONAL, 1998, 62 (02) :153-157
[5]  
Ezawa I, 1979, J JPN SOC FOOD NUTR, V32, P329
[6]  
GODA T, 1993, J NUTR SCI VITAMINOL, V39, P589, DOI 10.3177/jnsv.39.589
[7]  
GODA T, 1995, J NUTR, V125, P2869
[8]  
GODA T, 1992, J NUTR SCI VITAMINOL, V38, P277, DOI 10.3177/jnsv.38.277
[9]   A QUANTITATIVE HISTOLOGIC ANALYSIS OF THE GROWING LONG-BONE METAPHYSIS [J].
KIMMEL, DB ;
JEE, WSS .
CALCIFIED TISSUE INTERNATIONAL, 1980, 32 (02) :113-122
[10]   Maltitol increases transepithelial diffusional transfer of calcium in rat ileum [J].
Kishi, K ;
Goda, T ;
Takase, S .
LIFE SCIENCES, 1996, 59 (14) :1133-1140