Structural biochemistry and interaction architecture of the DNA double-strand break repair Mre11 nuclease and Rad50-ATPase

被引:415
作者
Hopfner, KP
Karcher, A
Craig, L
Woo, TT
Carney, JP
Tainer, JA [1 ]
机构
[1] Scripps Res Inst, Res Inst, Dept Mol Biol, La Jolla, CA 92037 USA
[2] Scripps Res Inst, Res Inst, Skaggs Inst Chem Biol, La Jolla, CA 92037 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA
[4] Univ Maryland, Sch Med, Marlene & Stewart Greenebaum Canc Ctr, Dept Radiat Oncol,Radiat Oncol Res Lab, Baltimore, MD 21201 USA
[5] Univ Maryland, Sch Med, Mol & Cell Biol Grad Program, Baltimore, MD 21201 USA
基金
加拿大健康研究院; 美国国家科学基金会;
关键词
D O I
10.1016/S0092-8674(01)00335-X
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To clarify functions of the Mre11/Rad50 (MR) complex in DNA double-strand break repair, we report Pyrococcus furiosus Mre11 crystal structures, revealing a protein phosphatase-like, dimanganese binding domain capped by a unique domain controlling active site access. These structures unify Mre11's multiple nuclease activities in a single endo/exonuclease mechanism and reveal eukaryotic macromolecular interaction sites by mapping human and yeast Mre11 mutations. Furthermore, the structure of the P. furiosus Rad50 ABC-ATPase with its adjacent coiled-coil defines a compact Mre11/Rad50-ATPase complex and suggests that Rad50-ATP-driven conformational switching directly controls the Mre11 exonuclease. Electron microscopy, small angle X-ray scattering, and ultracentrifugation data of human and P. furiosus MR reveal a dual functional complex consisting of a (Mre11)(2)/(Rad50)(2) heterotetrameric DNA processing head and a double coiled-coil linker.
引用
收藏
页码:473 / 485
页数:13
相关论文
共 63 条
  • [1] ANALYSIS OF WILD-TYPE AND RAD50 MUTANTS OF YEAST SUGGESTS AN INTIMATE-RELATIONSHIP BETWEEN MEIOTIC CHROMOSOME SYNAPSIS AND RECOMBINATION
    ALANI, E
    PADMORE, R
    KLECKNER, N
    [J]. CELL, 1990, 61 (03) : 419 - 436
  • [2] Conserved domains in DNA repair proteins and evolution of repair systems
    Aravind, L
    Walker, DR
    Koonin, EV
    [J]. NUCLEIC ACIDS RESEARCH, 1999, 27 (05) : 1223 - 1242
  • [3] THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY
    BAILEY, S
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 : 760 - 763
  • [4] Deletions at stalled replication forks occur by two different pathways
    Bierne, H
    Ehrlich, SD
    Michel, B
    [J]. EMBO JOURNAL, 1997, 16 (11) : 3332 - 3340
  • [5] Bressan DA, 1998, GENETICS, V150, P591
  • [6] Bressan DA, 1999, MOL CELL BIOL, V19, P7681
  • [7] Crystallography & NMR system:: A new software suite for macromolecular structure determination
    Brunger, AT
    Adams, PD
    Clore, GM
    DeLano, WL
    Gros, P
    Grosse-Kunstleve, RW
    Jiang, JS
    Kuszewski, J
    Nilges, M
    Pannu, NS
    Read, RJ
    Rice, LM
    Simonson, T
    Warren, GL
    [J]. ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 : 905 - 921
  • [8] The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: Linkage of double-strand break repair to the cellular DNA damage response
    Carney, JP
    Maser, RS
    Olivares, H
    Davis, EM
    Le Beau, M
    Yates, JR
    Hays, L
    Morgan, WF
    Petrini, JHJ
    [J]. CELL, 1998, 93 (03) : 477 - 486
  • [9] Chamankhah M, 2000, GENETICS, V155, P569
  • [10] Overexpression, purification, and characterization of the SbcCD protein from Escherichia coli
    Connelly, JC
    deLeau, ES
    Okely, EA
    Leach, DRF
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (32) : 19819 - 19826