High-throughput decoding of antitrypanosomal drug efficacy and resistance

被引:245
作者
Alsford, Sam [1 ]
Eckert, Sabine [2 ]
Baker, Nicola [1 ]
Glover, Lucy [1 ]
Sanchez-Flores, Alejandro [2 ]
Leung, Ka Fai [3 ]
Turner, Daniel J. [2 ]
Field, Mark C. [3 ]
Berriman, Matthew [2 ]
Horn, David [1 ]
机构
[1] London Sch Hyg & Trop Med, London WC1E 7HT, England
[2] Wellcome Trust Sanger Inst, Cambridge CB10 1SA, England
[3] Univ Cambridge, Dept Pathol, Cambridge CB2 1QP, England
基金
英国惠康基金;
关键词
BLOOD-STREAM FORMS; TRYPANOSOMA-BRUCEI; EXPRESSION; GLYCOPROTEIN; RNAI; DIAMIDINE; LYSOSOME; PROTEASE; SURAMIN; GENOME;
D O I
10.1038/nature10771
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The concept of disease-specific chemotherapy was developed a century ago. Dyes and arsenical compounds that displayed selectivity against trypanosomes were central to this work(1,2), and the drugs that emerged remain in use for treating human African trypanosomiasis (HAT)(3). The importance of understanding the mechanisms underlying selective drug action and resistance for the development of improved HAT therapies has been recognized, but these mechanisms have remained largely unknown. Here we use all five current HAT drugs for genome-scale RNA interference target sequencing (RIT-seq) screens in Trypanosoma brucei, revealing the transporters, organelles, enzymes and metabolic pathways that function to facilitate antitrypanosomal drug action. RIT-seq profiling identifies both known drug importers(4,5) and the only known prodrug activator(6), and links more than fifty additional genes to drug action. A bloodstream stage-specific invariant surface glycoprotein (ISG75) family mediates suramin uptake, and the AP1 adaptin complex, lysosomal proteases and major lysosomal transmembrane protein, as well as spermidine and N-acetylglucosamine biosynthesis, all contribute to suramin action. Further screens link ubiquinone availability to nitro-drug action, plasma membrane P-type H+-ATPases to pentamidine action, and trypanothione and several putative kinases to melarsoprol action. We also demonstrate a major role for aquaglyceroporins in pentamidine and melarsoprol cross-resistance. These advances in our understanding of mechanisms of antitrypanosomal drug efficacy and resistance will aid the rational design of new therapies and help to combat drug resistance, and provide unprecedented molecular insight into the mode of action of antitrypanosomal drugs.
引用
收藏
页码:232 / U125
页数:6
相关论文
共 45 条
[1]   Dileucine signal-dependent and AP-1-independent targeting of a lysosomal glycoprotein in Trypanosoma brucei [J].
Allen, Clare L. ;
Liao, Dangjin ;
Chung, Wei-Lian ;
Field, Mark C. .
MOLECULAR AND BIOCHEMICAL PARASITOLOGY, 2007, 156 (02) :175-190
[2]   Tagging a T-brucei RRNA locus improves stable transfection efficiency and circumvents inducible expression position effects [J].
Alsford, S ;
Kawahara, T ;
Glover, L ;
Horn, D .
MOLECULAR AND BIOCHEMICAL PARASITOLOGY, 2005, 144 (02) :142-148
[3]   Single-locus targeting constructs for reliable regulated RNAi and transgene expression in Trypanosoma brucei [J].
Alsford, Sam ;
Horn, David .
MOLECULAR AND BIOCHEMICAL PARASITOLOGY, 2008, 161 (01) :76-79
[4]   High-throughput phenotyping using parallel sequencing of RNA interference targets in the African trypanosome [J].
Alsford, Sam ;
Turner, Daniel J. ;
Obado, Samson O. ;
Sanchez-Flores, Alejandro ;
Glover, Lucy ;
Berriman, Matthew ;
Hertz-Fowler, Christiane ;
Horn, David .
GENOME RESEARCH, 2011, 21 (06) :915-924
[5]  
Ausubel F., 1998, CURRENT PROTOCOLS MO
[6]   Genome-wide RNAi screens in African trypanosomes identify the nifurtimox activator NTR and the eflornithine transporter AAT6 [J].
Baker, Nicola ;
Alsford, Sam ;
Horn, David .
MOLECULAR AND BIOCHEMICAL PARASITOLOGY, 2011, 176 (01) :55-57
[7]   The genome of the African trypanosome Trypanosoma brucei [J].
Berriman, M ;
Ghedin, E ;
Hertz-Fowler, C ;
Blandin, G ;
Renauld, H ;
Bartholomeu, DC ;
Lennard, NJ ;
Caler, E ;
Hamlin, NE ;
Haas, B ;
Böhme, W ;
Hannick, L ;
Aslett, MA ;
Shallom, J ;
Marcello, L ;
Hou, LH ;
Wickstead, B ;
Alsmark, UCM ;
Arrowsmith, C ;
Atkin, RJ ;
Barron, AJ ;
Bringaud, F ;
Brooks, K ;
Carrington, M ;
Cherevach, I ;
Chillingworth, TJ ;
Churcher, C ;
Clark, LN ;
Corton, CH ;
Cronin, A ;
Davies, RM ;
Doggett, J ;
Djikeng, A ;
Feldblyum, T ;
Field, MC ;
Fraser, A ;
Goodhead, I ;
Hance, Z ;
Harper, D ;
Harris, BR ;
Hauser, H ;
Hostetter, J ;
Ivens, A ;
Jagels, K ;
Johnson, D ;
Johnson, J ;
Jones, K ;
Kerhornou, AX ;
Koo, H ;
Larke, N .
SCIENCE, 2005, 309 (5733) :416-422
[8]   Genome-wide RNAi screens in bloodstream form trypanosomes identify drug transporters [J].
Burkard, Gabriela Schumann ;
Jutzi, Pascal ;
Roditi, Isabel .
MOLECULAR AND BIOCHEMICAL PARASITOLOGY, 2011, 175 (01) :91-94
[9]  
Buschini Annamaria, 2009, J Parasitol Res, V2009, P463575, DOI 10.1155/2009/463575
[10]   Active site mapping, biochemical properties and subcellular localization of rhodesain, the major cysteine protease of Trypanosoma brucei rhodesiense [J].
Caffrey, CR ;
Hansell, E ;
Lucas, KD ;
Brinen, LS ;
Hernandez, AA ;
Cheng, JN ;
Gwaltney, SL ;
Roush, WR ;
Stierhof, YD ;
Bogyo, M ;
Steverding, D ;
McKerrow, JH .
MOLECULAR AND BIOCHEMICAL PARASITOLOGY, 2001, 118 (01) :61-73