Description of a quantum convolutional code

被引:84
作者
Ollivier, H
Tillich, JP
机构
[1] Inst Natl Rech Informat & Automat, Projet CODES, F-78153 Le Chesnay, France
[2] Perimeter Inst, Waterloo, ON, Canada
[3] Inst Quantum Comp, Waterloo, ON, Canada
关键词
D O I
10.1103/PhysRevLett.91.177902
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We describe a quantum error correction scheme aimed at protecting a flow of quantum information over long distance communication. It is largely inspired by the theory of classical convolutional codes which are used in similar circumstances in classical communication. The particular example shown here uses the stabilizer formalism. We provide an explicit encoding circuit and its associated error estimation algorithm. The latter gives the most likely error over any memoryless quantum channel, with a complexity growing only linearly with the number of encoded qubits.
引用
收藏
页数:4
相关论文
共 18 条
[1]  
AHARONOV D, QUANTPH9906129
[2]  
[Anonymous], ARXIVQUANTPH9705052
[3]  
Bennett C. H., 1984, PROC IEEE INT C COMP, P175, DOI [DOI 10.1016/J.TCS.2014.05.025, 10.1016/j.tcs.2014.05.025]
[4]  
Buhrman H., 1998, Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, P63, DOI 10.1145/276698.276713
[5]   Quantum convolutional error-correcting codes [J].
Chau, HF .
PHYSICAL REVIEW A, 1998, 58 (02) :905-909
[6]   Good quantum-convolutional error-correction codes and their decoding algorithm exist [J].
Chau, HF .
PHYSICAL REVIEW A, 1999, 60 (03) :1966-1974
[7]  
Gottesman D, 1997, THESIS CALIFORNIA I
[8]  
Johannesson R., 1999, FUNDAMENTALS CONVOLU
[9]  
JOZSA R, ARXIVQUANTPH0201143
[10]   Perfect quantum error correcting code [J].
Laflamme, R ;
Miquel, C ;
Paz, JP ;
Zurek, WH .
PHYSICAL REVIEW LETTERS, 1996, 77 (01) :198-201