Orientation discrimination of single-stranded DNA inside the α-hemolysin membrane channel

被引:272
作者
Mathé, J
Aksimentiev, A
Nelson, DR
Schulten, K
Meller, A [1 ]
机构
[1] Harvard Univ, Rowland Inst, Cambridge, MA 02142 USA
[2] Univ Illinois, Beckman Inst, Urbana, IL 61801 USA
[3] Harvard Univ, Lyman Lab Phys, Cambridge, MA 02138 USA
关键词
asymmetry; DNA translocation; DNA hairpin;
D O I
10.1073/pnas.0502947102
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We characterize the voltage-driven motion and the free motion of single-stranded DNA (ssDNA) molecules captured inside the approximate to 1.5-nm alpha-hemolysin pore, and show that the DNA-channel interactions depend strongly on the orientation of the ssDNA molecules with respect to the pore. Remarkably, the voltage-free diffusion of the T-threaded DNA (in the trans to cis direction) is two times slower than the corresponding 5'-threaded DNA having the same poly(dA) sequence. Moreover, the ion currents flowing through the blocked pore with either a T-threaded DNA or 5' DNA differ by approximate to 30%. All-atom molecular dynamics simulations of our system reveal a microscopic mechanism for the asymmetric behavior. In a confining pore, the ssDNA straightens and its bases tilt toward the 5' end, assuming an asymmetric conformation. As a result, the bases of a 5'-threaded DNA experience larger effective friction and forced reorientation that favors co-passing of ions. Our results imply that the translocation process through a narrow pore is more complicated than previously believed and involves base tilting and stretching of ssDNA molecules inside the confining pore.
引用
收藏
页码:12377 / 12382
页数:6
相关论文
共 22 条
[1]   Microsecond time-scale discrimination among polycytidylic acid, polyadenylic acid, and polyuridylic acid as homopolymers or as segments within single RNA molecules [J].
Akeson, M ;
Branton, D ;
Kasianowicz, JJ ;
Brandin, E ;
Deamer, DW .
BIOPHYSICAL JOURNAL, 1999, 77 (06) :3227-3233
[2]   Imaging α-hemolysin with molecular dynamics:: Ionic conductance, osmotic permeability, and the electrostatic potential map [J].
Aksimentiev, A ;
Schulten, K .
BIOPHYSICAL JOURNAL, 2005, 88 (06) :3745-3761
[3]   Dynamics of DNA molecules in a membrane channel probed by active control techniques [J].
Bates, M ;
Burns, M ;
Meller, A .
BIOPHYSICAL JOURNAL, 2003, 84 (04) :2366-2372
[4]   A 2ND GENERATION FORCE-FIELD FOR THE SIMULATION OF PROTEINS, NUCLEIC-ACIDS, AND ORGANIC-MOLECULES [J].
CORNELL, WD ;
CIEPLAK, P ;
BAYLY, CI ;
GOULD, IR ;
MERZ, KM ;
FERGUSON, DM ;
SPELLMEYER, DC ;
FOX, T ;
CALDWELL, JW ;
KOLLMAN, PA .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1995, 117 (19) :5179-5197
[5]  
DRISELKELMANN B, 1994, MICROBIOL REV, V58, P293
[6]   Kinetics of duplex formation for individual DNA strands within a single protein nanopore [J].
Howorka, S ;
Movileanu, L ;
Braha, O ;
Bayley, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (23) :12996-13001
[7]   VMD: Visual molecular dynamics [J].
Humphrey, W ;
Dalke, A ;
Schulten, K .
JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 1996, 14 (01) :33-38
[8]   NAMD2:: Greater scalability for parallel molecular dynamics [J].
Kalé, L ;
Skeel, R ;
Bhandarkar, M ;
Brunner, R ;
Gursoy, A ;
Krawetz, N ;
Phillips, J ;
Shinozaki, A ;
Varadarajan, K ;
Schulten, K .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 151 (01) :283-312
[9]   Characterization of individual polynucleotide molecules using a membrane channel [J].
Kasianowicz, JJ ;
Brandin, E ;
Branton, D ;
Deamer, DW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (24) :13770-13773
[10]   Driven polymer translocation through a narrow pore [J].
Lubensky, DK ;
Nelson, DR .
BIOPHYSICAL JOURNAL, 1999, 77 (04) :1824-1838