Quantum computing with spin qubits interacting through delocalized excitons: Overcoming hole mixing

被引:23
作者
Lovett, BW
Nazir, A
Pazy, E
Barrett, SD
Spiller, TP
Briggs, GAD
机构
[1] Univ Oxford, Dept Mat, Oxford OX1 3PH, England
[2] Ben Gurion Univ Negev, Dept Chem, IL-84105 Beer Sheva, Israel
[3] Hewlett Packard Labs, Bristol BS34 8QZ, Avon, England
关键词
D O I
10.1103/PhysRevB.72.115324
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
As a candidate scheme for controllably coupled qubits, we consider two quantum dots, each doped with a single electron. The spin of the electron defines our qubit basis and trion states can be created by using polarized light; we show that the form of the excited trion depends on the state of the qubit. By using the Luttinger-Kohn Hamiltonian we calculate the form of these trion states in the presence of light-heavy hole mixing, and show that they can interact through both the Förster transfer and static dipole-dipole interactions. Finally, we demonstrate that by using chirped laser pulses, it is possible to perform a two-qubit gate in this system by adiabatically following the eigenstates as a function of laser detuning. These gates are robust in that they operate with any realistic degree of hole mixing, and for either type of trion-trion coupling. © 2005 The American Physical Society.
引用
收藏
页数:9
相关论文
共 64 条
[1]   Identification of atomic-like electronic states in indium arsenide nanocrystal quantum dots [J].
Banin, U ;
Cao, YW ;
Katz, D ;
Millo, O .
NATURE, 1999, 400 (6744) :542-544
[2]   Efficient high-fidelity quantum computation using matter qubits and linear optics [J].
Barrett, SD ;
Kok, P .
PHYSICAL REVIEW A, 2005, 71 (06)
[3]  
Basu PK., 1997, THEORY OPTICAL PROCE
[4]   Coupling and entangling of quantum states in quantum dot molecules [J].
Bayer, M ;
Hawrylak, P ;
Hinzer, K ;
Fafard, S ;
Korkusinski, M ;
Wasilewski, ZR ;
Stern, O ;
Forchel, A .
SCIENCE, 2001, 291 (5503) :451-453
[5]   Electron and hole g factors and exchange interaction from studies of the exciton fine structure in In0.60Ga0.40As quantum dots [J].
Bayer, M ;
Kuther, A ;
Forchel, A ;
Gorbunov, A ;
Timofeev, VB ;
Schäfer, F ;
Reithmaier, JP ;
Reinecke, TL ;
Walck, SN .
PHYSICAL REVIEW LETTERS, 1999, 82 (08) :1748-1751
[6]   Schemes for parallel quantum computation without local control of qubits [J].
Benjamin, SC .
PHYSICAL REVIEW A, 2000, 61 (02) :4
[7]   Electro-optical properties of semiconductor quantum dots: Application to quantum information processing [J].
Biolatti, E ;
D'Amico, I ;
Zanardi, P ;
Rossi, F .
PHYSICAL REVIEW B, 2002, 65 (07) :1-23
[8]   Coherent optical control of the quantum state of a single quantum dot [J].
Bonadeo, NH ;
Erland, J ;
Gammon, D ;
Park, D ;
Katzer, DS ;
Steel, DG .
SCIENCE, 1998, 282 (5393) :1473-1476
[9]   Optical pumping of the electronic and nuclear spin of single charge-tunable quantum dots [J].
Bracker, AS ;
Stinaff, EA ;
Gammon, D ;
Ware, ME ;
Tischler, JG ;
Shabaev, A ;
Efros, AL ;
Park, D ;
Gershoni, D ;
Korenev, VL ;
Merkulov, IA .
PHYSICAL REVIEW LETTERS, 2005, 94 (04) :1-4
[10]   Spin-based all-optical quantum computation with quantum dots: Understanding and suppressing decoherence [J].
Calarco, T ;
Datta, A ;
Fedichev, P ;
Pazy, E ;
Zoller, P .
PHYSICAL REVIEW A, 2003, 68 (01) :21