Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses

被引:315
作者
Diamant, S
Eliahu, N
Rosenthal, D
Goloubinoff, P [1 ]
机构
[1] Univ Lausanne, Inst Ecol, CH-8015 Lausanne, Switzerland
[2] Hebrew Univ Jerusalem, Inst Life Sci, Dept Plant Sci, IL-919043 Jerusalem, Israel
关键词
D O I
10.1074/jbc.M103081200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Salt and heat stresses, which are often combined in nature, induce complementing defense mechanisms. Organisms adapt to high external salinity by accumulating small organic compounds known as osmolytes, which equilibrate cellular osmotic pressure. Osmolytes can also act as "chemical chaperones" by increasing the stability of native proteins and assisting refolding of unfolded polypeptides. Adaptation to heat stress depends on the expression of heat-shock proteins, many of which are molecular chaperones, that prevent protein aggregation, disassemble protein aggregates, and assist protein refolding. We show here that Escherichia coli cells preadapted to high salinity contain increased levels of glycine betaine that prevent protein aggregation under thermal stress. After heat shock, the aggregated proteins, which escaped protection, were disaggregated in salt-adapted cells as efficiently as in low salt. Here we address the effects of four common osmolytes on chaperone activity in vitro. Systematic dose responses of glycine betaine, glycerol, proline, and trehalose revealed a regulatory effect on the folding activities of individual and combinations of chaperones GroEL, DnaK, and ClpB. With the exception of trehalose, low physiological concentrations of proline, glycerol, and especially glycine betaine activated the molecular chaperones, likely by assisting local folding in chaperone-bound polypeptides and stabilizing the native end product of the reaction. High osmolyte concentrations, especially trehalose, strongly inhibited DnaK-dependent chaperone networks, such as DnaK+GroEL and DnaK+ClpB, likely because high viscosity affects dynamic interactions between chaperones and folding substrates and stabilizes protein aggregates. Thus, during combined salt and heat stresses, cells can specifically control protein stability and chaperone-mediated disaggregation and refolding by modulating the intracellular levels of different osmolytes.
引用
收藏
页码:39586 / 39591
页数:6
相关论文
共 47 条
[1]   THE STABILIZATION OF PROTEINS BY OSMOLYTES [J].
ARAKAWA, T ;
TIMASHEFF, SN .
BIOPHYSICAL JOURNAL, 1985, 47 (03) :411-414
[2]  
Avron M., 1992, Dunaliella: physiology, biochemistry, and biotechnology
[3]   Review: Mechanisms of disaggregation and refolding of stable protein aggregates by molecular chaperones [J].
Ben-Zvi, AP ;
Goloubinoff, P .
JOURNAL OF STRUCTURAL BIOLOGY, 2001, 135 (02) :84-93
[4]   The osmophobic effect: Natural selection of a thermodynamic force in protein folding [J].
Bolen, DW ;
Baskakov, IV .
JOURNAL OF MOLECULAR BIOLOGY, 2001, 310 (05) :955-963
[5]   Supervising the fold: Functional principles of molecular chaperones [J].
Buchner, J .
FASEB JOURNAL, 1996, 10 (01) :10-19
[6]   The Hsp70 and Hsp60 chaperone machines [J].
Bukau, B ;
Horwich, AL .
CELL, 1998, 92 (03) :351-366
[7]   Thermoprotection by glycine betaine and choline [J].
Caldas, T ;
Demont-Caulet, N ;
Ghazi, A ;
Richarme, G .
MICROBIOLOGY-SGM, 1999, 145 :2543-2548
[8]   CHARACTERIZATION OF THE CYTOPLASM OF ESCHERICHIA-COLI-K-12 AS A FUNCTION OF EXTERNAL OSMOLARITY - IMPLICATIONS FOR PROTEIN DNA INTERACTIONS INVIVO [J].
CAYLEY, S ;
LEWIS, BA ;
GUTTMAN, HJ ;
RECORD, MT .
JOURNAL OF MOLECULAR BIOLOGY, 1991, 222 (02) :281-300
[9]   ORIGINS OF THE OSMOPROTECTIVE PROPERTIES OF BETAINE AND PROLINE IN ESCHERICHIA-COLI K-12 [J].
CAYLEY, S ;
LEWIS, BA ;
RECORD, MT .
JOURNAL OF BACTERIOLOGY, 1992, 174 (05) :1586-1595
[10]  
CHAMBERS S, 1985, J INFECT DIS, V152, P1308, DOI 10.1093/infdis/152.6.1308