Potential of 3-D tissue constructs engineered from bovine chondrocytes/silk fibroin-chitosan for in vitro cartilage tissue engineering

被引:170
作者
Bhardwaj, Nandana [1 ]
Nguyen, Quynhhoa T. [2 ]
Chen, Albert C. [2 ]
Kaplan, David L. [3 ]
Sah, Robert L. [2 ]
Kundu, Subhas C. [1 ]
机构
[1] Indian Inst Technol, Dept Biotechnol, Kharagpur 721302, W Bengal, India
[2] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[3] Tufts Univ, Dept Biomed Engn, Medford, MA 02155 USA
基金
美国国家卫生研究院;
关键词
Silk fibroin; Chitosan; Scaffolds; Chondrocytes; Cartilage; Tissue engineering; ARTICULAR-CARTILAGE; SILK FIBROIN; PORE-SIZE; SCAFFOLDS; MATRIX; CULTURE; BONE; BIOMATERIALS; HYDROGELS; EXPLANTS;
D O I
10.1016/j.biomaterials.2011.04.061
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The use of cell-scaffold constructs is a promising tissue engineering approach to repair cartilage defects and to study cartilaginous tissue formation. In this study, silk fibroin/chitosan blended scaffolds were fabricated and studied for cartilage tissue engineering. Silk fibroin served as a substrate for cell adhesion and proliferation while chitosan has a structure similar to that of glycosaminoglycans, and shows promise for cartilage repair. We compared the formation of cartilaginous tissue in silk fibroin/chitosan blended scaffolds seeded with bovine chondrocytes and cultured in vitro for 2 weeks. The constructs were analyzed for cell viability, histology, extracellular matrix components glycosaminoglycan and collagen types I and II, and biomechanical properties. Silk fibroin/chitosan scaffolds supported cell attachment and growth, and chondrogenic phenotype as indicated by Alcian Blue histochemistry and relative expression of type II versus type I collagen. Glycosaminoglycan and collagen accumulated in all the scaffolds and was highest in the silk fibroin/chitosan (1:1) blended scaffolds. Static and dynamic stiffness at high frequencies was higher in cell-seeded constructs than non-seeded controls. The results suggest that silk/chitosan scaffolds may be a useful alternative to synthetic cell scaffolds for cartilage tissue engineering. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:5773 / 5781
页数:9
相关论文
共 73 条
[1]   Silk-based biomaterials [J].
Altman, GH ;
Diaz, F ;
Jakuba, C ;
Calabro, T ;
Horan, RL ;
Chen, JS ;
Lu, H ;
Richmond, J ;
Kaplan, DL .
BIOMATERIALS, 2003, 24 (03) :401-416
[2]   Chitosan/polyester-based scaffolds for cartilage tissue engineering: Assessment of extracellular matrix formation [J].
Alves da Silva, M. L. ;
Crawford, A. ;
Mundy, J. M. ;
Correlo, V. M. ;
Sol, P. ;
Bhattacharya, M. ;
Hatton, P. V. ;
Reis, R. L. ;
Neves, N. M. .
ACTA BIOMATERIALIA, 2010, 6 (03) :1149-1157
[3]   Basic science of articular cartilage repair [J].
Athanasiou, KA ;
Shah, AR ;
Hernandez, RJ ;
LeBaron, RG .
CLINICS IN SPORTS MEDICINE, 2001, 20 (02) :223-+
[4]   DIFFERENCES BETWEEN SUB-POPULATIONS OF CULTURED BOVINE ARTICULAR CHONDROCYTES .2. PROTEOGLYCAN METABOLISM [J].
AYDELOTTE, MB ;
GREENHILL, RR ;
KUETTNER, KE .
CONNECTIVE TISSUE RESEARCH, 1988, 18 (03) :223-234
[5]   Silk fibroin protein and chitosan polyelectrolyte complex porous scaffolds for tissue engineering applications [J].
Bhardwaj, Nandana ;
Kundu, Subhas C. .
CARBOHYDRATE POLYMERS, 2011, 85 (02) :325-333
[6]   Electrospinning: A fascinating fiber fabrication technique [J].
Bhardwaj, Nandana ;
Kundu, Subhas C. .
BIOTECHNOLOGY ADVANCES, 2010, 28 (03) :325-347
[7]  
Bonassar LJ., 2002, Methods of tissue engineering, P1027
[8]  
BUSCHMANN MD, 1995, J CELL SCI, V108, P1497
[9]   Gelatin-chondroitin-hyaluronan tri-copolymer scaffold for cartilage tissue engineering [J].
Chang, CH ;
Liu, HC ;
Lin, CC ;
Chou, CH ;
Lin, FH .
BIOMATERIALS, 2003, 24 (26) :4853-4858
[10]   Depth- and strain-dependent mechanical and electromechanical properties of full-thickness bovine articular cartilage in confined compression [J].
Chen, AC ;
Bae, WC ;
Schinagl, RM ;
Sah, RL .
JOURNAL OF BIOMECHANICS, 2001, 34 (01) :1-12