Myogenic defects in myotonic dystrophy

被引:43
作者
Amack, JD
Mahadevan, MS
机构
[1] Univ Virginia, Dept Pathol, Charlottesville, VA 22908 USA
[2] Univ Utah, Huntsman Canc Inst, Salt Lake City, UT 84108 USA
关键词
myotonic dystrophy; trinucleotide repeat disease; skeletal muscle; myogenesis;
D O I
10.1016/j.ydbio.2003.07.021
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Myogenesis is the developmental program that generates and regenerates skeletal muscle. This process is impaired in patients afflicted with myotonic dystrophy type 1 (DM1). Muscle development is disrupted in infants born with congenital DM1, and recent evidence suggests that defective regeneration may contribute to muscle weakness and wasting in affected adults. DM1 represents the first example of a human disease that is caused, at least in part, by pathogenic mRNA. Cell culture models have been used to demonstrate that mutant DM1 mRNA takes on a gain-of-function and inhibits myoblast differentiation. Although the molecular mechanism(s) by which this mutant mRNA disrupts myogenesis is not fully understood, recent findings suggest that anomalous RNA-protein interactions have downstream consequences that compromise key myogenic factors. In this review, we revisit morphological studies that revealed the nature of myogenic abnormalities seen in patients, describe cell culture systems that have been used to investigate this phenotype and discuss recent discoveries that for the first time have identified myogenic events that are disrupted in DM1. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:294 / 301
页数:8
相关论文
共 52 条
[1]   Cis and trans effects of the myotonic dystrophy (DM) mutation in a cell culture model [J].
Amack, JD ;
Paguio, AP ;
Mahadevan, MS .
HUMAN MOLECULAR GENETICS, 1999, 8 (11) :1975-1984
[2]   Mutant DMPK 3′-UTR transcripts disrupt C2C12 myogenic differentiation by compromising MyoD [J].
Amack, JD ;
Reagan, SR ;
Mahadevan, MS .
JOURNAL OF CELL BIOLOGY, 2002, 159 (03) :419-429
[3]   The myotonic dystrophy expanded CUG repeat tract is necessary but not sufficient to disrupt C2C12 myoblast differentiation [J].
Amack, JD ;
Mahadevan, MS .
HUMAN MOLECULAR GENETICS, 2001, 10 (18) :1879-1887
[4]   The muscleblind gene participates in the organization of Z-bands and epidermal attachments of Drosophila muscles and is regulated by Dmef2 [J].
Artero, R ;
Prokop, A ;
Paricio, N ;
Begemann, G ;
Pueyo, I ;
Mlodzik, M ;
Perez-Alonso, M ;
Baylies, MK .
DEVELOPMENTAL BIOLOGY, 1998, 195 (02) :131-143
[5]   CYTOPLASMIC ACTIVATION OF HUMAN NUCLEAR GENES IN STABLE HETEROCARYONS [J].
BLAU, HM ;
CHIU, CP ;
WEBSTER, C .
CELL, 1983, 32 (04) :1171-1180
[6]  
BROOK, 1992, CELL, V69, P385
[7]   Muscle-specific alternative splicing of myotubularin-related 1 gene is impaired in DM1 muscle cells [J].
Buj-Bello, A ;
Furling, D ;
Tronchère, H ;
Laporte, J ;
Lerouge, T ;
Butler-Browne, GS ;
Mandel, JL .
HUMAN MOLECULAR GENETICS, 2002, 11 (19) :2297-2307
[8]   Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing [J].
Charlet-B, N ;
Savkur, RS ;
Singh, G ;
Philips, AV ;
Grice, EA ;
Cooper, TA .
MOLECULAR CELL, 2002, 10 (01) :45-53
[9]   Trinucleotide repeats: Mechanisms and pathophysiology [J].
Cummings, CJ ;
Zoghbi, HY .
ANNUAL REVIEW OF GENOMICS AND HUMAN GENETICS, 2000, 1 :281-328
[10]   Expansion of a CUG trinucleotide repeat in the 3' untranslated region of myotonic dystrophy protein kinase transcripts results in nuclear retention of transcripts [J].
Davis, BM ;
McCurrach, ME ;
Taneja, KL ;
Singer, RH ;
Housman, DE .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (14) :7388-7393