Mechanism and consequences for paralog-specific sumoylation of ubiquitin-specific protease 25

被引:192
作者
Meulmeester, Erik [1 ]
Kunze, Marion [1 ]
Hsiao, He Hsuan [2 ]
Urlaub, Henning [2 ]
Melchior, Frauke [1 ]
机构
[1] Univ Gottingen, Fac Med, Dept Biochem, D-37073 Gottingen, Germany
[2] Max Planck Inst Biophys Chem, Bioanalyt Mass Spectrometry Grp, D-37077 Gottingen, Germany
关键词
D O I
10.1016/j.molcel.2008.03.021
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Vertebrates express two distinct families of SUMO proteins (SUMO1 and SUMO2/3) that serve distinct functions as posttranslational modifiers. Many proteins are modified specifically with SUMO1 or SUMO2/3, but the mechanisms for paralog selectivity are poorly understood. In a screen for SUMO2/3 binding proteins, we identified Ubiquitin Specific Protease 25 (USP25). USP25 turned out to also be a target for sumoylation, being more efficient with SUMO2/3. Sumoylation takes place within USP25's two ubiquitin interaction motifs (UIMs) that are required for efficient hydrolysis of ubiquitin chains. USP25 sumoylation impairs binding to and hydrolysis of ubiquitin chains. Both SUMO2/3-specific binding and sumoylation depend on a SUMO interaction motif (SIM/SBM). Seven amino acids in the SIM of USP25 are sufficient for SUMO2/3-specific binding and conjugation, even when taken out of structural context. One mechanism for paralog-specific sumoylation may, thus, involve SIM-dependent recruitment of SUMO1 or SUMO2/3 thioester-charged Ubc9 to targets.
引用
收藏
页码:610 / 619
页数:10
相关论文
共 53 条
[1]   SUMO1 haploinsufficiency leads to cleft lip and palate [J].
Alkuraya, Fowzan S. ;
Saadi, Irfan ;
Lund, Jennifer J. ;
Turbe-Doan, Annick ;
Morton, Cynthia C. ;
Maas, Richard L. .
SCIENCE, 2006, 313 (5794) :1751-1751
[2]   Distinct in vivo dynamics of vertebrate SUMO paralogues [J].
Ayaydin, F ;
Dasso, M .
MOLECULAR BIOLOGY OF THE CELL, 2004, 15 (12) :5208-5218
[3]   Crystal structure of thymine DNA glycosylase conjugated to SUMO-1 [J].
Baba, D ;
Maita, N ;
Jee, JG ;
Uchimura, Y ;
Saitoh, H ;
Sugasawa, K ;
Hanaoka, F ;
Tochio, H ;
Hiroaki, H ;
Shirakawa, M .
NATURE, 2005, 435 (7044) :979-982
[4]   Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1 [J].
Bernier-Villamor, V ;
Sampson, DA ;
Matunis, MJ ;
Lima, CD .
CELL, 2002, 108 (03) :345-356
[5]  
Boddy MN, 1996, ONCOGENE, V13, P971
[6]   The ubiquitin-specific protease USP25 interacts with three sarcomeric proteins [J].
Bosch-Comas, A ;
Lindsten, K ;
Gonzàlez-Duarte, R ;
Masucci, MG ;
Marfany, G .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2006, 63 (06) :723-734
[7]   A fluorescence resonance energy transfer-based assay to study SUMO modification in solution [J].
Bossis, G ;
Chmielarska, K ;
Gärtner, U ;
Pichler, A ;
Stieger, E ;
Melchior, F .
UBIQUITIN AND PROTEIN DEGRADATION, PART A, 2005, 398 :20-32
[8]   Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes [J].
Bossis, G ;
Melchior, F .
MOLECULAR CELL, 2006, 21 (03) :349-357
[9]   Concepts in sumoylation: a decade on [J].
Geiss-Friedlander, Ruth ;
Melchior, Frauke .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2007, 8 (12) :947-956
[10]   Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae [J].
Hannich, JT ;
Lewis, A ;
Kroetz, MB ;
Li, SJ ;
Heide, H ;
Emili, A ;
Hochstrasser, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (06) :4102-4110