Sorting of vesicular monoamine transporter 2 to the regulated secretory pathway confers the somatodendritic exocytosis of monoamines

被引:64
作者
Li, HY
Waites, CL
Staal, RG
Dobryy, Y
Park, J
Sulzer, DL
Edwards, RH
机构
[1] Univ Calif San Francisco, Sch Med, Grad Program Neurosci, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Sch Med, Grad Program Cell Biol, Dept Neurol, San Francisco, CA 94143 USA
[3] Univ Calif San Francisco, Sch Med, Dept Physiol, San Francisco, CA 94143 USA
[4] Columbia Univ, Dept Neurol, New York, NY 10032 USA
关键词
D O I
10.1016/j.neuron.2005.09.033
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The release of monoamine neurotransmitters from cell bodies and dendrites has an important role in behavior, but the mechanism (vesicular or nonvesicular) has remained unclear. Because the location of vesicular monoamine transporter 2 (VMAT2) defines the secretory vesicles capable of monoamine release, we have studied its trafficking to assess the potential for monoamine release by exocytosis. In neuroendocrine PC12 cells, VMAT2 localizes exclusively to large dense-core vesicles (LDCVs), and we now show that cytoplasmic signals target VMAT2 directly to LDCVs within the biosynthetic pathway. In neurons, VMAT2 localizes to a population of vesicles that we now find undergo regulated exocytosis in dendrites. Although hippocampal neurons do not express typical LDCV proteins, transfected chromogranins A, B, and brain-derived neurotrophic factor (BDNF) colocalize with VMAT2. VMAT2 thus defines a population of secretory vesicles that mediate the activity-dependent somato-dendritic release of multiple retrograde signals involved in synaptic function, growth, and plasticity.
引用
收藏
页码:619 / 633
页数:15
相关论文
共 61 条
[1]   A microdialysis study of the in vivo release of 5-HT in the median raphe nucleus of the rat [J].
Adell, A ;
Artigas, F .
BRITISH JOURNAL OF PHARMACOLOGY, 1998, 125 (06) :1361-1367
[2]   Sorting and storage during secretory granule biogenesis: looking backward and looking forward [J].
Arvan, P ;
Castle, D .
BIOCHEMICAL JOURNAL, 1998, 332 :593-610
[3]  
Balkowiec A, 2002, J NEUROSCI, V22, P10399
[4]   Vesicular dopamine release elicits an inhibitory postsynaptic current in midbrain dopamine neurons [J].
Beckstead, MJ ;
Grandy, DK ;
Wickman, K ;
Williams, JT .
NEURON, 2004, 42 (06) :939-946
[5]   Somatodendritic dopamine release in rat substantia nigra influences motor performance on the accelerating rod [J].
Bergquist, F ;
Shahabi, HN ;
Nissbrandt, H .
BRAIN RESEARCH, 2003, 973 (01) :81-91
[6]   Evidence for different exocytosis pathways in dendritic and terminal dopamine release in vivo [J].
Bergquist, F ;
Niazi, HS ;
Nissbrandt, H .
BRAIN RESEARCH, 2002, 950 (1-2) :245-253
[7]   A complex web of signal-dependent trafficking underlies the triorganellar distribution of P-selectin in neuroendocrine PC12 cells [J].
Blagoveshchenskaya, AD ;
Hewitt, EW ;
Cutler, DF .
JOURNAL OF CELL BIOLOGY, 1999, 145 (07) :1419-1433
[8]   AMPA receptor trafficking at excitatory synapses [J].
Bredt, DS ;
Nicoll, RA .
NEURON, 2003, 40 (02) :361-379
[9]   Differential vesicular targeting and time course of synaptic secretion of the mammalian neurotrophins [J].
Brigadski, T ;
Hartmann, M ;
Lessmann, V .
JOURNAL OF NEUROSCIENCE, 2005, 25 (33) :7601-7614
[10]   A regulated secretory pathway in cultured hippocampal astrocytes [J].
Calegari, F ;
Coco, S ;
Taverna, E ;
Bassetti, M ;
Verderio, C ;
Corradi, N ;
Matteoli, M ;
Rosa, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (32) :22539-22547