Configuration based scene classification and image indexing

被引:47
作者
Lipson, P
Grimson, E
Sinha, P
机构
来源
1997 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, PROCEEDINGS | 1997年
关键词
D O I
10.1109/CVPR.1997.609453
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Scene classification is a major open challenge in machine vision. Most solutions proposed so far such as those based on color histograms and local texture statistics cannot capture a scene's global configuration, which is critical in perceptual judgments of scene similarity. We present a novel approach, ''configural recognition'', for encoding scene class structure. The approach's main feature is its use of qualitative spatial and photometric relationships within and across regions in low resolution images. The emphasis on qualitative measures leads to enhanced generalization abilities and the use of low-resolution images renders the scheme computationally efficient. We present results on a large database of natural scenes. We also describe how qualitative scene concepts may be learned from examples.
引用
收藏
页码:1007 / 1013
页数:7
相关论文
empty
未找到相关数据