Song system auditory responses are stable and highly tuned during sedation, rapidly modulated and unselective during wakefulness, and suppressed by arousal

被引:90
作者
Cardin, JA
Schmidt, MF
机构
[1] Univ Penn, Dept Biol, Leidy Labs 312, Philadelphia, PA 19104 USA
[2] Univ Penn, Neurosci Grad Grp, Philadelphia, PA 19104 USA
关键词
D O I
10.1152/jn.00391.2003
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
We used auditory responsiveness in the avian song system to investigate the complex relationship between behavioral state and sensory processing in a high-order sensorimotor brain area. We present evidence from recordings in awake, anesthetized, and sleeping male zebra finches (Taeniopygia guttata) that auditory responsiveness in nucleus HVc is profoundly affected by changes in behavioral state. In anesthetized and sleeping birds, auditory responses were characterized by an increase in firing rate that was selective for the bird's own song (BOS) and highly stable over time. In contrast, HVc responses during wakefulness were extremely variable and transitioned between undetectable and robust levels over short intervals. Surprisingly, auditory responses in awake birds were not selective for the BOS stimulus. The variability of HVc auditory responses in awake birds suggests that, as in mammals, wakefulness is not a uniform behavioral state. Rather, auditory responsiveness likely is continually influenced by variables such as arousal state. We therefore developed several experimental paradigms in which we could manipulate arousal levels during auditory stimulus presentation. In all cases, arousal suppressed HVc auditory responses. This effect was specific to the song system, as auditory responses in Field L, a primary auditory area that is a source of auditory input to HVc, were unaffected. While arousal acts as a negative regulator of HVc auditory responsiveness, the presence and variability of the responses observed in awake, alert birds suggests that other mechanisms, such as attention, may enhance auditory responsiveness. The interplay between behavioral state and sensory processing may regulate song system responsiveness according to the bird's behavioral and social context.
引用
收藏
页码:2884 / 2899
页数:16
相关论文
共 67 条
[1]   Identification of the origin of catecholaminergic inputs to HVc in canaries by retrograde tract tracing combined with tyrosine hydroxylase immunocytochemistry [J].
Appeltants, D ;
Absil, P ;
Balthazart, J ;
Ball, GF .
JOURNAL OF CHEMICAL NEUROANATOMY, 2000, 18 (03) :117-133
[2]   Spike timing in the mammalian visual system [J].
Bair, W .
CURRENT OPINION IN NEUROBIOLOGY, 1999, 9 (04) :447-453
[3]   THE DISTRIBUTION OF TYROSINE-HYDROXYLASE IMMUNOREACTIVITY IN THE BRAINS OF MALE AND FEMALE ZEBRA FINCHES [J].
BOTTJER, SW .
JOURNAL OF NEUROBIOLOGY, 1993, 24 (01) :51-69
[4]   ALTERED PERCEPTION OF SPECIES-SPECIFIC SONG BY FEMALE BIRDS AFTER LESIONS OF A FOREBRAIN NUCLEUS [J].
BRENOWITZ, EA .
SCIENCE, 1991, 251 (4991) :303-305
[5]  
CARDIN JA, 2002, SOC NEUR ABSTR, V27
[6]  
CARDIN JA, 2001, SOC NEUR ABSTR, V27
[7]   Cortical sensory suppression during arousal is due to the activity-dependent depression of thalamocortical synapses [J].
Castro-Alamancos, MA ;
Oldford, E .
JOURNAL OF PHYSIOLOGY-LONDON, 2002, 541 (01) :319-331
[8]   Properties of primary sensory (lemniscal) synapses in the ventrobasal thalamus and the relay of high-frequency sensory inputs [J].
Castro-Alamancos, MA .
JOURNAL OF NEUROPHYSIOLOGY, 2002, 87 (02) :946-953
[9]   Different temporal processing of sensory inputs in the rat thalamus during quiescent and information processing states in vivo [J].
Castro-Alamancos, MA .
JOURNAL OF PHYSIOLOGY-LONDON, 2002, 539 (02) :567-578
[10]   DETERMINATION OF TRANSFER RATIO OF CATS GENICULATE NEURONS THROUGH QUASI-INTRACELLULAR RECORDINGS AND RELATION WITH LEVEL OF ALERTNESS [J].
COENEN, AML ;
VENDRIK, AJH .
EXPERIMENTAL BRAIN RESEARCH, 1972, 14 (03) :227-+