Reduction and restoration of mitochondrial DNA content after focal cerebral ischemia/reperfusion

被引:67
作者
Chen, H
Hu, CJ
He, YY
Yang, DI
Xu, J
Hsu, CY
机构
[1] Washington Univ, Sch Med, Ctr Study Nervous Syst Injury, St Louis, MO 63110 USA
[2] Washington Univ, Sch Med, Dept Neurol, St Louis, MO 63110 USA
关键词
cerebral ischemia; focal; DNA damage; DNA; mitochondrial; DNA repair; rats;
D O I
10.1161/hs1001.097099
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background and Purpose-Oxidative damage of mitochondrial DNA (mtDNA) in the ischemic brain is expected after ischemia/reperfusion injury. A recent study demonstrated limited patterns of mtDNA deletion in the brain after ischemia/reperfusion. We studied the ischemia/reperfusion-induced global changes of mtDNA integrity and its restoration in a rat model of transient focal ischemia in vivo. Methods-Changes in mtDNA content in the ischemic brain were assessed with the use of a rat stroke model featuring transient severe ischemia confined to the cerebral cortex of the right middle cerebral artery territory for 30 or 90 minutes. A new long polymerase chain reaction method, using mouse DNA as an internal standard, was applied to measure the relative content of intact rat mtDNA. Southern hybridization following alkaline gel electrophoresis was conducted in a parallel study to confirm long polymerase chain reaction results. Results-A reduction in mtDNA content was found after ischemia for 30 and 90 minutes. The mtDNA was restored to near nonischemic levels 24 hours after 30- but not 90-minute ischemia. Conclusions-These results confirm that ischemia/reperfusion causes mtDNA damages. Restoration of the mtDNA content to nonischemic levels after 30-minute ischemia raises the possibility that mtDNA repair or repletion occurs after brief ischemia.
引用
收藏
页码:2382 / 2387
页数:6
相关论文
共 30 条
[1]  
Abe K, 1996, ADV NEUROL, V71, P485
[2]   PicoGreen quantitation of DNA: Effective evaluation of samples pre- or post-PCR [J].
Ahn, SJ ;
Costa, J ;
Emanuel, JR .
NUCLEIC ACIDS RESEARCH, 1996, 24 (13) :2623-2625
[3]   Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals [J].
Barja, G ;
Herrero, A .
FASEB JOURNAL, 2000, 14 (02) :312-318
[4]   PCR AMPLIFICATION OF UP TO 35-KB DNA WITH HIGH-FIDELITY AND HIGH-YIELD FROM LAMBDA-BACTERIOPHAGE TEMPLATES [J].
BARNES, WM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (06) :2216-2220
[5]   MOLECULAR-BASIS OF MITOCHONDRIAL-DNA DISEASE [J].
BROWN, MD ;
WALLACE, DC .
JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 1994, 26 (03) :273-289
[6]   OXYGEN FREE-RADICAL INVOLVEMENT IN ISCHEMIA AND REPERFUSION INJURY TO BRAIN [J].
CAO, W ;
CARNEY, JM ;
DUCHON, A ;
FLOYD, RA ;
CHEVION, M .
NEUROSCIENCE LETTERS, 1988, 88 (02) :233-238
[7]   Role of oxidants in ischemic brain damage [J].
Chan, PH .
STROKE, 1996, 27 (06) :1124-1129
[8]   Reactive oxygen radicals in signaling and damage in the ischemic brain [J].
Chan, PH .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2001, 21 (01) :2-14
[9]   A MODEL OF FOCAL ISCHEMIC STROKE IN THE RAT - REPRODUCIBLE EXTENSIVE CORTICAL INFARCTION [J].
CHEN, ST ;
HSU, CY ;
HOGAN, EL ;
MARICQ, H ;
BALENTINE, JD .
STROKE, 1986, 17 (04) :738-743
[10]   EFFECTIVE AMPLIFICATION OF LONG TARGETS FROM CLONED INSERTS AND HUMAN GENOMIC DNA [J].
CHENG, S ;
FOCKLER, C ;
BARNES, WM ;
HIGUCHI, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (12) :5695-5699