Differential DNA recognition and glycosylase activity of the native human MutY homolog (hMYH) and recombinant hMYH expressed in bacteria

被引:37
作者
Gu, YS [1 ]
Lu, AL [1 ]
机构
[1] Univ Maryland, Sch Med, Dept Biochem & Mol Biol, Baltimore, MD 21201 USA
关键词
D O I
10.1093/nar/29.12.2666
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Human MutY homolog (hMYH), an adenine DNA glycosylase, can effectively remove misincorporated adenines opposite template G or 8-oxoG bases, thereby preventing G:C-->T:A transversions. Human cell extracts possess the adenine DNA glycosylase activity of hMYH and can form protein-DNA complexes with both A/G and A/8-oxoG mismatches, hMYH in cell extracts was shown to be the primary binding protein for A/G- and A/8-oxoG-containing DNA substrates by UV cross-linking. However, recombinant hMYH expressed in bacteria has much weaker glycosylase and substrate-binding activities towards A/G mismatches than native hMYH. Moreover, the protein-DNA complex of bacterially expressed hMYH migrates much faster than that of native hMYH in a non-denaturing polyacrylamide gel. Dephosphorylation of native hMYH reduces the glycosylase activity on A/G more extensively than on A/8-oxoG mismatches but does not alter the gel mobility of the protein-DNA complex. Our results suggest that hMYH in human cell extracts may be associated with other factors in the protein-DNA complex to account for its slower mobility in the gel. hMYH and apurinic/apyrimidinic endonuclease (hAPE1) co-migrate with the protein-DNA complex formed by the extracts and A/8-oxoG-containing DNA.
引用
收藏
页码:2666 / 2674
页数:9
相关论文
共 36 条
[1]  
Aburatani H, 1997, CANCER RES, V57, P2151
[2]   DIETARY CARCINOGENS AND ANTICARCINOGENS - OXYGEN RADICALS AND DEGENERATIVE DISEASES [J].
AMES, BN .
SCIENCE, 1983, 221 (4617) :1256-1264
[3]   ENDOGENOUS OXIDATIVE DNA DAMAGE, AGING, AND CANCER [J].
AMES, BN .
FREE RADICAL RESEARCH COMMUNICATIONS, 1989, 7 (3-6) :121-128
[4]   Cloning of a human homolog of the yeast OGG1 gene that is involved in the repair of oxidative DNA damage [J].
Arai, K ;
Morishita, K ;
Shinmura, K ;
Kohno, T ;
Kim, SR ;
Nohmi, T ;
Taniwaki, M ;
Ohwada, S ;
Yokota, J .
ONCOGENE, 1997, 14 (23) :2857-2861
[5]  
BESSHO T, 1993, J BIOL CHEM, V268, P19416
[6]   Human mitochondrial uracil-DNA glycosylase preform (UNG1) is processed to two forms one of which is resistant to inhibition by AP sites [J].
Bharati, S ;
Krokan, HE ;
Kristiansen, L ;
Otterlei, M ;
Slupphaug, G .
NUCLEIC ACIDS RESEARCH, 1998, 26 (21) :4953-4959
[7]   ACCURATE TRANSCRIPTION INITIATION BY RNA POLYMERASE-II IN A SOLUBLE EXTRACT FROM ISOLATED MAMMALIAN NUCLEI [J].
DIGNAM, JD ;
LEBOVITZ, RM ;
ROEDER, RG .
NUCLEIC ACIDS RESEARCH, 1983, 11 (05) :1475-1489
[8]  
FULLER SA, 1995, CURRENT PROTOCOLS MO, V2
[9]   GENOMIC STRUCTURE AND CHROMOSOME LOCATION OF THE HUMAN MUTT HOMOLOG GENE MTH1 ENCODING 8-OXO-DGTPASE FOR PREVENTION OF A-T TO C-G TRANSVERSION [J].
FURUICHI, M ;
YOSHIDA, MC ;
ODA, H ;
TAJIRI, T ;
NAKABEPPU, Y ;
TSUZUKI, T ;
SEKIGUCHI, M .
GENOMICS, 1994, 24 (03) :485-490
[10]   MUTAGENESIS BY 8-OXOGUANINE - AN ENEMY WITHIN [J].
GROLLMAN, AP ;
MORIYA, M .
TRENDS IN GENETICS, 1993, 9 (07) :246-249