Cellular interactions in the rat somatosensory thalamocortical system during normal and epileptic 5-9 Hz oscillations

被引:114
作者
Pinault, D [1 ]
机构
[1] INSERM, Lab Anat Electrophysiol Cellulaire & Integree, U398, Fac Med, F-67085 Strasbourg, France
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2003年 / 552卷 / 03期
关键词
D O I
10.1113/jphysiol.2003.046573
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In Genetic Absence Epilepsy Rats from Strasbourg (GAERS), generalized spike-and-wave (SW) discharges (5-9 SW s(-1)) develop during quiet immobile wakefulness from a natural, medium-voltage, 5-9 Hz rhythm. This study examines the spatio-temporal dynamics of cellular interactions in the somatosensory thalamocortical system underlying the generation of normal and epileptic 5-9 Hz oscillations. Paired single-unit and multi-unit recordings between the principal elements of this circuit and intracellular recordings of thalamic, relay and reticular, neurones were conducted in neuroleptanalgesied GAERS and control, non-epileptic, rats. The identity of the recorded neurones was established following juxtacellular or intracellular marking. At least six major findings have emerged from this study. (1) In GAERS, generalized spike-and-wave discharges were correlated with synchronous rhythmic firings in related thalamic relay and reticular neurones. (2) Usually, corticothalamic discharges phase-led related relay and reticular firings. (3) A depolarizing wave emerging from a barrage of EPSPs was the cause of both relay and reticular discharges. (4) In some relay cells, which had a relatively high membrane input resistance, the depolarizing wave had the shape of a ramp, which could trigger a low-threshold Ca2+ spike. (5) In reticular cells, the EPSP barrage could further trigger voltage-dependent depolarizations. (6) The epilepsy-related thalamic, relay and reticular, intracellular activities were similar to the normal-related thalamic activities. Overall, these findings strongly suggest that, during absence seizures, corticothalamic neurones play a primary role in the synchronized excitation of thalamic relay and reticular neurones. The present study further suggests that absence-related spike-and-wave discharges correspond to hypersynchronous wake-related physiological oscillations.
引用
收藏
页码:881 / 905
页数:25
相关论文
共 55 条
[1]   BLOCKADE OF NEUROTRANSMITTER-ACTIVATED K+ CONDUCTANCE BY QX-314 IN THE RAT HIPPOCAMPUS [J].
ANDRADE, R .
EUROPEAN JOURNAL OF PHARMACOLOGY, 1991, 199 (02) :259-262
[2]   INTRINSIC-PROPERTIES OF NUCLEUS RETICULARIS THALAMI NEURONS OF THE RAT STUDIED INVITRO [J].
AVANZINI, G ;
DECURTIS, M ;
PANZICA, F ;
SPREAFICO, R .
JOURNAL OF PHYSIOLOGY-LONDON, 1989, 416 :111-122
[3]   INTERACTION OF CORTEX AND THALAMUS IN SPIKE AND WAVE DISCHARGES OF FELINE GENERALIZED PENICILLIN EPILEPSY [J].
AVOLI, M ;
GLOOR, P .
EXPERIMENTAL NEUROLOGY, 1982, 76 (01) :196-217
[4]   MECHANISMS OF OSCILLATORY ACTIVITY IN GUINEA-PIG NUCLEUS-RETICULARIS THALAMI IN-VITRO - A MAMMALIAN PACEMAKER [J].
BAL, T ;
MCCORMICK, DA .
JOURNAL OF PHYSIOLOGY-LONDON, 1993, 468 :669-691
[5]   ROLE OF THE FERRET PERIGENICULATE NUCLEUS IN THE GENERATION OF SYNCHRONIZED OSCILLATIONS IN-VITRO [J].
BAL, T ;
VONKROSIGK, M ;
MCCORMICK, DA .
JOURNAL OF PHYSIOLOGY-LONDON, 1995, 483 (03) :665-685
[6]  
Bal T, 2000, J NEUROSCI, V20, P7478
[7]   GABAERGIC NEURONS ARE PRESENT IN THE DORSAL COLUMN NUCLEI BUT NOT IN THE VENTROPOSTERIOR COMPLEX OF RATS [J].
BARBARESI, P ;
SPREAFICO, R ;
FRASSONI, C ;
RUSTIONI, A .
BRAIN RESEARCH, 1986, 382 (02) :305-326
[8]  
Blumenfeld H, 2000, J NEUROSCI, V20, P5153
[9]   CORTICOTHALAMIC PROJECTIONS FROM THE CORTICAL BARREL FIELD TO THE SOMATOSENSORY THALAMUS IN RATS - A SINGLE-FIBER STUDY USING BIOCYTIN AS AN ANTEROGRADE TRACER [J].
BOURASSA, J ;
PINAULT, D ;
DESCHENES, M .
EUROPEAN JOURNAL OF NEUROSCIENCE, 1995, 7 (01) :19-30
[10]   Synchronized oscillations caused by disinhibition in rodent neocortex are generated by recurrent synaptic activity mediated by AMPA receptors [J].
Castro-Alamancos, MA ;
Rigas, P .
JOURNAL OF PHYSIOLOGY-LONDON, 2002, 542 (02) :567-581