Maximizing Barber's bipartite modularity is also hard

被引:16
作者
Miyauchi, Atsushi [1 ]
Sukegawa, Noriyoshi [1 ]
机构
[1] Tokyo Inst Technol, Grad Sch Decis Sci & Technol, Meguro Ku, Tokyo 1528552, Japan
关键词
Network analysis; Community detection; Modularity maximization; Bipartite networks; Computational complexity; COMMUNITY STRUCTURES; NETWORKS;
D O I
10.1007/s11590-014-0818-7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Modularity introduced by Newman and Girvan (Phys Rev E 69:026113, 2004) is a quality function for community detection in networks. Numerous methods for modularity maximization have been developed so far. In 2007, Barber (Phys Rev E 76:066102, 2007) introduced a variant of modularity called bipartite modularity which is appropriate for bipartite networks. Although maximizing the standard modularity is known to be NP-hard, the computational complexity of maximizing bipartite modularity has yet to be revealed. In this study, we prove that maximizing bipartite modularity is also NP-hard. More specifically, we show the NP-completeness of its decision version by constructing a reduction from a classical partitioning problem.
引用
收藏
页码:897 / 913
页数:17
相关论文
共 27 条
[1]   Modularity-maximizing graph communities via mathematical programming [J].
Agarwal, G. ;
Kempe, D. .
EUROPEAN PHYSICAL JOURNAL B, 2008, 66 (03) :409-418
[2]   Column generation algorithms for exact modularity maximization in networks [J].
Aloise, Daniel ;
Cafieri, Sonia ;
Caporossi, Gilles ;
Hansen, Pierre ;
Perron, Sylvain ;
Liberti, Leo .
PHYSICAL REVIEW E, 2010, 82 (04)
[3]   Modularity and community detection in bipartite networks [J].
Barber, Michael J. .
PHYSICAL REVIEW E, 2007, 76 (06)
[4]   Fast unfolding of communities in large networks [J].
Blondel, Vincent D. ;
Guillaume, Jean-Loup ;
Lambiotte, Renaud ;
Lefebvre, Etienne .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2008,
[5]   Detecting complex network modularity by dynamical clustering [J].
Boccaletti, S. ;
Ivanchenko, M. ;
Latora, V. ;
Pluchino, A. ;
Rapisarda, A. .
PHYSICAL REVIEW E, 2007, 75 (04)
[6]   On modularity clustering [J].
Brandes, Ulrik ;
Delling, Daniel ;
Gaertler, Marco ;
Goerke, Robert ;
Hoefer, Martin ;
Nikoloski, Zoran ;
Wagner, Dorothea .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2008, 20 (02) :172-188
[7]   Reformulation of a model for hierarchical divisive graph modularity maximization [J].
Cafieri, Sonia ;
Costa, Alberto ;
Hansen, Pierre .
ANNALS OF OPERATIONS RESEARCH, 2014, 222 (01) :213-226
[8]   Locally optimal heuristic for modularity maximization of networks [J].
Cafieri, Sonia ;
Hansen, Pierre ;
Liberti, Leo .
PHYSICAL REVIEW E, 2011, 83 (05)
[9]  
Clauset A, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.066111
[10]   A locally optimal hierarchical divisive heuristic for bipartite modularity maximization [J].
Costa, Alberto ;
Hansen, Pierre .
OPTIMIZATION LETTERS, 2014, 8 (03) :903-917