Thermodynamic efficiency limit of excitonic solar cells

被引:146
作者
Giebink, Noel C. [1 ,2 ]
Wiederrecht, Gary P. [1 ,2 ]
Wasielewski, Michael R. [1 ,2 ,3 ]
Forrest, Stephen R. [4 ,5 ,6 ]
机构
[1] Argonne Natl Lab, Ctr Nanoscale Mat, Argonne, IL 60439 USA
[2] Northwestern Univ, Argonne NW Solar Energy Res Ctr ANSER, Evanston, IL 60208 USA
[3] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[4] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[5] Univ Michigan, Dept Mat Sci & Engn, Ann Arbor, MI 48109 USA
[6] Univ Michigan, Dept Phys, Ann Arbor, MI 48109 USA
关键词
ENERGY-CONVERSION;
D O I
10.1103/PhysRevB.83.195326
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Excitonic solar cells, comprised of materials such as organic semiconductors, inorganic colloidal quantum dots, and carbon nanotubes, are fundamentally different than crystalline, inorganic solar cells in that photogeneration of free charge occurs through intermediate, bound exciton states. Here, we show that the Second Law of Thermodynamics limits the maximum efficiency of excitonic solar cells below the maximum of 31% established by Shockley and Queisser [J. Appl. Phys. 32, 510 (1961)] for inorganic solar cells (whose exciton-binding energy is small). In the case of ideal heterojunction excitonic cells, the free energy for charge transfer at the interface, Delta G, places an additional constraint on the limiting efficiency due to a fundamental increase in the recombination rate, with typical -Delta G in the range 0.3 to 0.5 eV decreasing the maximum efficiency to 27% and 22%, respectively.
引用
收藏
页数:6
相关论文
共 28 条
[1]  
[Anonymous], 1981, Heat and Thermodynamics
[2]  
Brabec CJ., 2003, Organic photovoltaics, concepts and realization
[3]  
Brutting W., 2005, Physics of Organic Semiconductors
[4]   Analytical model for the open-circuit voltage and its associated resistance in organic planar heterojunction solar cells [J].
Cheyns, D. ;
Poortmans, J. ;
Heremans, P. ;
Deibel, C. ;
Verlaak, S. ;
Rand, B. P. ;
Genoe, J. .
PHYSICAL REVIEW B, 2008, 77 (16)
[5]   Ideal diode equation for organic heterojunctions. I. Derivation and application [J].
Giebink, N. C. ;
Wiederrecht, G. P. ;
Wasielewski, M. R. ;
Forrest, S. R. .
PHYSICAL REVIEW B, 2010, 82 (15)
[6]   Ideal diode equation for organic heterojunctions. II. The role of polaron pair recombination [J].
Giebink, N. C. ;
Lassiter, B. E. ;
Wiederrecht, G. P. ;
Wasielewski, M. R. ;
Forrest, S. R. .
PHYSICAL REVIEW B, 2010, 82 (15)
[7]   The photoconversion mechanism of excitonic solar cells [J].
Gregg, BA .
MRS BULLETIN, 2005, 30 (01) :20-22
[8]   Charge-separation energy in films of π-conjugated organic molecules [J].
Hill, IG ;
Kahn, A ;
Soos, ZG ;
Pascal, RA .
CHEMICAL PHYSICS LETTERS, 2000, 327 (3-4) :181-188
[9]   Efficiency Limits of Organic Bulk Heterojunction Solar Cells [J].
Kirchartz, Thomas ;
Taretto, Kurt ;
Rau, Uwe .
JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (41) :17958-17966
[10]  
Lewis GN, 1961, THERMODYNAMICS