Isotropic fading vector broadcast channels: The scalar upper bound and loss in degrees of freedom

被引:99
作者
Jafar, SA [1 ]
Goldsmith, AJ
机构
[1] Univ Calif Irvine, Dept Elect Engn & Comp Sci, Irvine, CA 92697 USA
[2] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
关键词
broadcast channel; channel capacity; channel state information; degrees of freedom; fading channels; multiple antennas;
D O I
10.1109/TIT.2004.842621
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We propose a scalar upper bound on the capacity region of the isotropic fading vector broadcast channel in terms of the capacity region of a scalar fading broadcast channel. The scalar upper bound is applicable to the broad class of isotropic fading broadcast channels regardless of the distribution of the users' channel magnitudes, the distribution of the additive noise experienced by each user, or the amount of channel knowledge available at the receiver. Using this upper bound, we prove the optimality of the Alamouti scheme in a broadcast setting, extend the recent results on the capacity of nondegraded, fading scalar broadcast channels to nondegraded fading vector broadcast channels, and determine the capacity region of a fading vector Gaussian broadcast channel with channel magnitude feedback. We also provide an example of a Rayleigh-fading broadcast channel with no channel state information available to the receiver (CSIR), where the bound on the capacity region obtained by a naive application of the scalar upper bound is provably loose, because it fails to account for the additional loss in degrees of freedom due to lack of channel knowledge at the receiver. A tighter upper bound is obtained by separately accounting for the loss in degrees of freedom due to lack of CSIR before applying the scalar upper bound.
引用
收藏
页码:848 / 857
页数:10
相关论文
共 17 条
[1]   A simple transmit diversity technique for wireless communications [J].
Alamouti, SM .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 1998, 16 (08) :1451-1458
[2]   SIMPLE CONVERSE FOR BROADCAST CHANNELS WITH ADDITIVE WHITE GAUSSIAN NOISE [J].
BERGMANS, PP .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1974, 20 (02) :279-280
[3]   RANDOM CODING THEOREM FOR BROADCAST CHANNELS WITH DEGRADED COMPONENTS [J].
BERGMANS, PP .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1973, 19 (02) :197-207
[4]   On the capacity of some channels with channel state information [J].
Caire, G ;
Shamai, S .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (06) :2007-2019
[5]   On the achievable throughput of a multiantenna Gaussian broadcast channel [J].
Caire, G ;
Shamai, S .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (07) :1691-1706
[6]   BROADCAST CHANNELS [J].
COVER, TM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1972, 18 (01) :2-+
[7]   Capacity of a mobile multiple-antenna wireless link with isotropically random Rician fading [J].
Godavarti, M ;
Marzetta, TL ;
Shamai, S .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (12) :3330-3334
[8]   Capacity of fading channels with channel side information [J].
Goldsmith, AJ ;
Varaiya, PP .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (06) :1986-1992
[9]   Unitary space-time modulation for multiple-antenna communications in Rayleigh flat fading [J].
Hochwald, BM ;
Marzetta, TL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (02) :543-564
[10]  
JARAR S, 2004, P GLOBECOM DALL DEC