Synthesis of hydroxyapatite crystals using amino acid-capped gold nanoparticles as a scaffold

被引:62
作者
Rautaray, D [1 ]
Mandal, S [1 ]
Sastry, M [1 ]
机构
[1] Natl Chem Lab, Nanosci Grp, Mat Chem Div, Pune 411008, Maharashtra, India
关键词
D O I
10.1021/la048541f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Inorganic composites are of special interest for biomedical applications such as in dental and bone implants wherein the ability to modulate the morphology and size of the inorganic crystals is important. One interesting possibility to control the size of inorganic crystals is to grow them on nanoparticles. We report here the use of surface-modified gold nanoparticles as templates for the growth of hydroxyapatite crystals. Crystal growth is promoted by a monolayer of aspartic acid bound to the surface of the gold nanoparticles; the carboxylate ions in aspartic acid are excellent hinging sites for Ca2+ ions. Isothermal titration calorimetry studies of Ca2+ ion binding with aspartic acid-capped gold nanoparticles indicates that the process is entropically driven and that screening of the negative charge by the metal ions leads to their aggregation. The aggregates of gold nanopartictes are believed to be responsible for assembly of the platelike hydroxyapatite crystals into quasi-spherical superstructures. Control experiments using uncapped gold nanoparticles and pure aspartic acid indicate that the amino acid bound to the nanogold surface plays a key role in inducing and directing hydroxyapatite crystal growth.
引用
收藏
页码:5185 / 5191
页数:7
相关论文
共 68 条
[1]   A CHEMICAL-MODEL FOR THE COOPERATION OF SULFATES AND CARBOXYLATES IN CALCITE CRYSTAL NUCLEATION - RELEVANCE TO BIOMINERALIZATION [J].
ADDADI, L ;
MORADIAN, J ;
SHAY, E ;
MAROUDAS, NG ;
WEINER, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1987, 84 (09) :2732-2736
[2]   Control of macromolecule distribution within synthetic and biogenic single calcite crystals [J].
Aizenberg, J ;
Hanson, J ;
Koetzle, TF ;
Weiner, S ;
Addadi, L .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (05) :881-886
[3]   INTERACTIONS OF VARIOUS SKELETAL INTRACRYSTALLINE COMPONENTS WITH CALCITE CRYSTALS [J].
ALBECK, S ;
AIZENBERG, J ;
ADDADI, L ;
WEINER, S .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1993, 115 (25) :11691-11697
[4]   The effect of recombinant mouse amelogenins on the formation and organization of hydroxyapatite crystals in vitro [J].
Beniash, E ;
Simmer, JP ;
Margolis, HC .
JOURNAL OF STRUCTURAL BIOLOGY, 2005, 149 (02) :182-190
[5]   TOTAL ALIGNMENT OF CALCITE AT ACIDIC POLYDIACETYLENE FILMS - COOPERATIVITY AT THE ORGANIC-INORGANIC INTERFACE [J].
BERMAN, A ;
AHN, DJ ;
LIO, A ;
SALMERON, M ;
REICHERT, A ;
CHARYCH, D .
SCIENCE, 1995, 269 (5223) :515-518
[6]   BIOLOGICAL-CONTROL OF CRYSTAL TEXTURE - A WIDESPREAD STRATEGY FOR ADAPTING CRYSTAL PROPERTIES TO FUNCTION [J].
BERMAN, A ;
HANSON, J ;
LEISEROWITZ, L ;
KOETZLE, TF ;
WEINER, S ;
ADDADI, L .
SCIENCE, 1993, 259 (5096) :776-779
[7]   Biomimetic growth of hydroxyapatite on gelatin films doped with sodium polyacrylate [J].
Bigi, A ;
Boanini, E ;
Panzavolta, S ;
Roveri, N .
BIOMACROMOLECULES, 2000, 1 (04) :752-756
[8]  
Busch S, 1999, EUR J INORG CHEM, P1643
[9]   KINETICS OF DISSOLUTION OF CALCIUM HYDROXYAPATITE .4. THE EFFECT OF SOME BIOLOGICALLY IMPORTANT INHIBITORS [J].
CHRISTOFFERSEN, J ;
CHRISTOFFERSEN, MR .
JOURNAL OF CRYSTAL GROWTH, 1981, 53 (01) :42-54
[10]   SPIRAL GROWTH AND DISSOLUTION MODELS WITH RATE CONSTANTS RELATED TO THE FREQUENCY OF PARTIAL DEHYDRATION OF CATIONS AND TO THE SURFACE-TENSION [J].
CHRISTOFFERSEN, J ;
CHRISTOFFERSEN, MR .
JOURNAL OF CRYSTAL GROWTH, 1988, 87 (01) :41-50