Scaffold-mediated symmetry breaking by Cdc42p

被引:205
作者
Irazoqui, JE [1 ]
Gladfelter, AS [1 ]
Lew, DJ [1 ]
机构
[1] Duke Univ, Med Ctr, Dept Pharmacol & Canc Biol, Durham, NC 27710 USA
关键词
D O I
10.1038/ncb1068
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Cell polarization generally occurs along a single well-defined axis that is frequently determined by environmental cues such as chemoattractant gradients or cell-cell contacts, but polarization can also occur spontaneously in the apparent absence of such cues, through a process called symmetry breaking(1-5). In Saccharomyces cerevisiae, cells are born with positional landmarks that mark the poles of the cell and guide subsequent polarization and bud emergence to those sites, but cells lacking such landmarks polarize towards a random cortical site and proliferate normally(6). The landmarks employ a Ras-family GTPase, Rsr1p(7-9), to communicate with the conserved Rho-family GTPase Cdc42p, which is itself polarized and essential for cytoskeletal polarization(10,11). We found that yeast Cdc42p was effectively polarized to a single random cortical site even in the combined absence of landmarks, microtubules and microfilaments. Among a panel of Cdc42p effectors and interacting proteins, we found that the scaffold protein Bem1p was uniquely required for this symmetry-breaking behaviour. Moreover, polarization was dependent on GTP hydrolysis by Cdc42p, suggesting that assembly of a polarization site involves cycling of Cdc42p between GTP- and GDP-bound forms, rather than functioning as a simple on/off switch.
引用
收藏
页码:1062 / 1070
页数:9
相关论文
共 55 条
[1]   CDC42 AND CDC43, 2 ADDITIONAL GENES INVOLVED IN BUDDING AND THE ESTABLISHMENT OF CELL POLARITY IN THE YEAST SACCHAROMYCES-CEREVISIAE [J].
ADAMS, AEM ;
JOHNSON, DI ;
LONGNECKER, RM ;
SLOAT, BF ;
PRINGLE, JR .
JOURNAL OF CELL BIOLOGY, 1990, 111 (01) :131-142
[2]   The PX domain as a novel phosphoinositide-binding module [J].
Ago, T ;
Takeya, R ;
Hiroaki, H ;
Kuribayashi, F ;
Ito, T ;
Kohda, D ;
Sumimoto, H .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2001, 287 (03) :733-738
[3]  
Ausubel FM, 1995, CURRENT PROTOCOLS MO
[4]   High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A [J].
Ayscough, KR ;
Stryker, J ;
Pokala, N ;
Sanders, M ;
Crews, P ;
Drubin, DG .
JOURNAL OF CELL BIOLOGY, 1997, 137 (02) :399-416
[5]   USE OF A SCREEN FOR SYNTHETIC LETHAL AND MULTICOPY SUPPRESSEE MUTANTS TO IDENTIFY 2 NEW GENES INVOLVED IN MORPHOGENESIS IN SACCHAROMYCES-CEREVISIAE [J].
BENDER, A ;
PRINGLE, JR .
MOLECULAR AND CELLULAR BIOLOGY, 1991, 11 (03) :1295-1305
[8]   Associations among PH and SH3 domain-containing proteins and Rho-type GTPases in yeast [J].
Bender, L ;
Lo, HS ;
Lee, H ;
Kokojan, V ;
Peterson, J ;
Bender, A .
JOURNAL OF CELL BIOLOGY, 1996, 133 (04) :879-894
[9]   Involvement of an actomyosin contractile ring in Saccharomyces cerevisiae cytokinesis [J].
Bi, E ;
Maddox, P ;
Lew, DJ ;
Salmon, ED ;
McMillan, JN ;
Yeh, E ;
Pringle, JR .
JOURNAL OF CELL BIOLOGY, 1998, 142 (05) :1301-1312
[10]   Assembly of scaffold-mediated complexes containing Cdc42p, the exchange factor Cdc24p and the effector Cla4p required for cell cycle-regulated phosphorylation of Cdc24p [J].
Bose, I ;
Irazoqui, JE ;
Moskow, JJ ;
Bardes, ESG ;
Zyla, TR ;
Lew, DJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (10) :7176-7186