Mammalian mitochondrial uncoupling proteins

被引:81
作者
Jezek, P
Garlid, KD
机构
[1] Acad Sci Czech Republ, Dept Membrane Transport Biophys, Inst Physiol, CZ-14220 Prague, Czech Republic
[2] Oregon Grad Inst, Dept Chem Biochem & Mol Biol, Portland, OR 97291 USA
关键词
D O I
10.1016/S1357-2725(98)00076-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The mammalian uncoupling protein (UCP-1) from the gene family of mitochondrial carriers is a dimer of identical 33 kDa subunits, each containing six membrane-spanning alpha-helices. Its expression, restricted to brown fat, occurs upon birth, cold acclimation and overfeeding. UCP-1 dissipates redox energy and thereby provides heat to the animal. Two additional isoforms have recently been discovered, 59% homologous UCP-2, widely expressed (heart, kidney, lung, placenta, lymphocytes, white fat); and UCP-3 (57% homologous), found in brown fat and skeletal muscle. Their physiological roles are unknown, but may include the regulation of body weight and energy balance, muscle nonshivering thermogenesis, fever, and defense against generation of reactive oxygen species. Consequently, great pharmacological potential is expected in revealing their biochemical and hormonal regulators. UCP-1 mediates a purine-nucleotide-sensitive uniport of monovalent unipolar anions, including fatty acids, that lead to fatty acid cycling and uncoupling. UCP-2 and UCP-3 are expected to share a similar mechanism. (C) 1998 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1163 / 1168
页数:6
相关论文
共 22 条
[1]   Uncoupling protein-3: A new member of the mitochondrial carrier family with tissue-specific expression [J].
Boss, O ;
Samec, S ;
PaoloniGiacobino, A ;
Rossier, C ;
Dulloo, A ;
Seydoux, J ;
Muzzin, P ;
Giacobino, JP .
FEBS LETTERS, 1997, 408 (01) :39-42
[2]   HUMAN UNCOUPLING PROTEIN GENE - STRUCTURE, COMPARISON WITH RAT GENE, AND ASSIGNMENT TO THE LONG ARM OF CHROMOSOME-4 [J].
CASSARD, AM ;
BOUILLAUD, F ;
MATTEI, MG ;
HENTZ, E ;
RAIMBAULT, S ;
THOMAS, M ;
RICQUIER, D .
JOURNAL OF CELLULAR BIOCHEMISTRY, 1990, 43 (03) :255-264
[3]  
ElMoualij B, 1997, YEAST, V13, P573, DOI 10.1002/(SICI)1097-0061(199705)13:6<573::AID-YEA107>3.0.CO
[4]  
2-I
[5]   Uncoupling protein-2: A novel gene linked to obesity and hyperinsulinemia [J].
Fleury, C ;
Neverova, M ;
Collins, S ;
Raimbault, S ;
Champigny, O ;
LeviMeyrueis, C ;
Bouillaud, F ;
Seldin, MF ;
Surwit, RS ;
Ricquier, D ;
Warden, CH .
NATURE GENETICS, 1997, 15 (03) :269-272
[6]   On the mechanism of fatty acid-induced proton transport by mitochondrial uncoupling protein [J].
Garlid, KD ;
Orosz, DE ;
Modriansky, M ;
Vassanelli, S ;
Jezek, P .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (05) :2615-2620
[7]   Cloning and characterization of an uncoupling protein homolog - A potential molecular mediator of human thermogenesis [J].
Gimeno, RE ;
Dembski, M ;
Weng, X ;
Deng, NH ;
Shyjan, AW ;
Gimeno, CJ ;
Iris, F ;
Ellis, SJ ;
Woolf, EA ;
Tartaglia, LA .
DIABETES, 1997, 46 (05) :900-906
[8]   Uncoupling protein-3 is a mediator of thermogenesis regulated by thyroid hormone, beta 3-adrenergic agonists, and leptin [J].
Gong, DW ;
He, YF ;
Karas, M ;
Reitman, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (39) :24129-24132
[9]  
JEZEK P, 1990, J BIOL CHEM, V265, P19303
[10]   A structure-activity study of fatty acid interaction with mitochondrial uncoupling protein [J].
Jezek, P ;
Modriansky, M ;
Garlid, KD .
FEBS LETTERS, 1997, 408 (02) :166-170