Mapping photonic entanglement into and out of a quantum memory

被引:449
作者
Choi, K. S. [1 ]
Deng, H. [1 ]
Laurat, J. [1 ]
Kimble, H. J. [1 ]
机构
[1] CALTECH, Norman Bridge Lab Phys 12 33, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
D O I
10.1038/nature06670
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Developments in quantum information science(1) rely critically on entanglement - a fundamental aspect of quantum mechanics that causes parts of a composite system to show correlations stronger than can be explained classically(2). In particular, scalable quantum networks require the capability to create, store and distribute entanglement among distant matter nodes by means of photonic channels(3). Atomic ensembles can play the role of such nodes(4). Sofar, in the photon- counting regime, heralded entanglement between atomic ensembles has been successfully demonstrated through probabilistic protocols(5,6). But an inherent drawback of this approach is the compromise between the amount of entanglement and its preparation probability, leading to intrinsically low count rates for high entanglement. Here we report a protocol where entanglement between two atomic ensembles is created by coherent mapping of an entangled state of light. By splitting a single photon(7-9) and performing subsequent state transfer, we separate the generation of entanglement and its storage(10). After a programmable delay, the stored entanglement is mapped back into photonic modes with overall efficiency of 17%. Together with improvements in single- photon sources(11), our protocol will allow 'on- demand' entanglement of atomic ensembles, a powerful resource for quantum information science.
引用
收藏
页码:67 / U4
页数:6
相关论文
共 37 条
[1]   Generation of paired photons with controllable waveforms [J].
Balic, V ;
Braje, DA ;
Kolchin, P ;
Yin, GY ;
Harris, SE .
PHYSICAL REVIEW LETTERS, 2005, 94 (18) :1-4
[2]  
BRIEGEL HJ, 2000, PHYS QUANTUM INFORMA
[3]   Storage and retrieval of single photons transmitted between remote quantum memories [J].
Chanelière, T ;
Matsukevich, DN ;
Jenkins, SD ;
Lan, SY ;
Kennedy, TAB ;
Kuzmich, A .
NATURE, 2005, 438 (7069) :833-836
[4]   Deterministic and storable single-photon source based on a quantum memory [J].
Chen, Shuai ;
Chen, Yu-Ao ;
Strassel, Thorsten ;
Yuan, Zhen-Sheng ;
Zhao, Bo ;
Schmiedmayer, Joerg ;
Pan, Jian-Wei .
PHYSICAL REVIEW LETTERS, 2006, 97 (17)
[5]   Memory-built-in quantum teleportation with photonic and atomic qubits [J].
Chen, Yu-Ao ;
Chen, Shuai ;
Yuan, Zhen-Sheng ;
Zhao, Bo ;
Chuu, Chih-Sung ;
Schmiedmayer, Joerg ;
Pan, Jian-Wei .
NATURE PHYSICS, 2008, 4 (02) :103-107
[6]   Functional quantum nodes for entanglement distribution over scalable quantum networks [J].
Chou, Chin-Wen ;
Laurat, Julien ;
Deng, Hui ;
Choi, Kyung Soo ;
de Riedmatten, Hugues ;
Felinto, Daniel ;
Kimble, H. Jeff .
SCIENCE, 2007, 316 (5829) :1316-1320
[7]   Measurement-induced entanglement for excitation stored in remote atomic ensembles [J].
Chou, CW ;
de Riedmatten, H ;
Felinto, D ;
Polyakov, SV ;
van Enk, SJ ;
Kimble, HJ .
NATURE, 2005, 438 (7069) :828-832
[8]   BELLS THEOREM - EXPERIMENTAL TESTS AND IMPLICATIONS [J].
CLAUSER, JF ;
SHIMONY, A .
REPORTS ON PROGRESS IN PHYSICS, 1978, 41 (12) :1881-1927
[9]   Direct measurement of decoherence for entanglement between a photon and stored atomic excitation [J].
de Riedmatten, H. ;
Laurat, J. ;
Chou, C. W. ;
Schomburg, E. W. ;
Felinto, D. ;
Kimble, H. J. .
PHYSICAL REVIEW LETTERS, 2006, 97 (11)
[10]   Long-distance quantum communication with atomic ensembles and linear optics [J].
Duan, LM ;
Lukin, MD ;
Cirac, JI ;
Zoller, P .
NATURE, 2001, 414 (6862) :413-418