Numerical simulation of the semi-classical limit of the focusing nonlinear Schrodinger equation

被引:43
作者
Bronski, JC
Kutz, JN
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[2] Univ Washington, Dept Appl Math, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0375-9601(99)00133-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a series of careful numerical experiments on the semi-classical limit of the focusing nonlinear Schrodinger equation. We observe the emergence of an ordered train of solitons, which was originally predicted by one of the authors based on a numerical and analytical study of the Zakharov-Shabat eigenvalue problem. The velocity and amplitude of the solitons in the train are in extremely good agreement with the predictions of the previous work. We also observe a difference in behavior between analytic and non-analytic initial data which suggests that, at least for certain initial data, the elliptic modulation equations are correct. (C) 1999 Published by Elsevier Science B.V.
引用
收藏
页码:325 / 336
页数:12
相关论文
共 25 条
[1]   ASYMPTOTIC PROPAGATION PROPERTIES OF PULSES IN A SOLITON-BASED OPTICAL-FIBER COMMUNICATION-SYSTEM [J].
ANDERSON, D ;
LISAK, M ;
REICHEL, T .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1988, 5 (02) :207-210
[2]  
BLOCH AM, 1994, NATO ADV SCI I SER B, V320
[3]   Semiclassical eigenvalue distribution of the Zakharov-Shabat eigenvalue problem [J].
Bronski, JC .
PHYSICA D, 1996, 97 (04) :376-397
[4]  
BRONSKI JC, 1994, NATO ADV SCI I SER B, V320
[5]  
Deift P, 1998, MEM AM MATH SOC, V131, P1
[6]  
DEIFT P, UNPUB
[7]  
ERCOLANI NM, 1993, ZERO DISPERSION LIMI
[8]   MULTIPHASE AVERAGING AND THE INVERSE SPECTRAL SOLUTION OF THE KORTEWEG-DEVRIES EQUATION [J].
FLASCHKA, H ;
FOREST, MG ;
MCLAUGHLIN, DW .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1980, 33 (06) :739-784
[9]   Onset of oscillations in nonsoliton pulses in nonlinear dispersive fibers [J].
Forest, MG ;
McLaughlin, KTR .
JOURNAL OF NONLINEAR SCIENCE, 1998, 8 (01) :43-62
[10]  
FOREST MG, 1986, IMA, V2