Widespread inhibition proportional to excitation controls the gain of a leech behavioral circuit

被引:43
作者
Baca, Serapio M. [1 ]
Marin-Burgin, Antonia [1 ]
Wagenaar, Daniel A. [1 ]
Kristan, William B., Jr. [1 ]
机构
[1] Univ Calif San Diego, Div Biol Sci, Neurobiol Sect, La Jolla, CA 92093 USA
关键词
D O I
10.1016/j.neuron.2007.11.028
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Changing gain in a neuronal system has important functional consequences, but the underlying mechanisms have been elusive. Models have suggested a variety of neuronal and systems properties to accomplish gain control. Here, we show that the gain of the neuronal network underlying local bending behavior in leeches depends on widespread inhibition. Using behavioral analysis, intracellular recordings, and voltage-sensitive dye imaging, we compared the effects of blocking just the known lateral inhibition with blocking all GABAergic inhibition. This revealed an additional source of inhibition, which was widespread and increased in proportion to increasing stimulus intensity. In a model of the input/output functions of the three-layered local bending network, we showed that inhibiting all interneurons in proportion to the stimulus strength produces the experimentally observed change in gain. This relatively simple mechanism for controlling behavioral gain could be prevalent in vertebrate as well as invertebrate nervous systems.
引用
收藏
页码:276 / 289
页数:14
相关论文
共 69 条
[1]   Drivers and modulators from push-pull and balanced synaptic input [J].
Abbott, LF ;
Chance, FS .
CORTICAL FUNCTION: A VIEW FROM THE THALAMUS, 2005, 149 :147-155
[2]   Location and intensity discrimination in the leech local bend response quantified using optic flow and principal components analysis [J].
Baca, SM ;
Thomson, EE ;
Kristan, WB .
JOURNAL OF NEUROPHYSIOLOGY, 2005, 93 (06) :3560-3572
[3]   Balanced inhibition and excitation drive spike activity in spinal half-centers [J].
Berg, Rune W. ;
Alaburda, Aidas ;
Hounsgaard, Jorn .
SCIENCE, 2007, 315 (5810) :390-393
[4]   Timing and specificity of feed-forward inhibition within the LGN [J].
Blitz, DM ;
Regehr, WG .
NEURON, 2005, 45 (06) :917-928
[5]   Optical imaging of neuronal populations during decision-making [J].
Briggman, KL ;
Abarbanel, HDI ;
Kristan, WB .
SCIENCE, 2005, 307 (5711) :896-901
[6]   The posterior parietal cortex: Sensorimotor interface for the planning and online control of visually guided movements [J].
Buneo, Christopher A. ;
Andersen, Richard A. .
NEUROPSYCHOLOGIA, 2006, 44 (13) :2594-2606
[7]   Identification of neural circuits by imaging coherent electrical activity with FRET-based dyes [J].
Cacciatore, TW ;
Brodfuehrer, PD ;
Gonzalez, JE ;
Jiang, T ;
Adams, SR ;
Tsien, RY ;
Kristan, WB ;
Kleinfeld, D .
NEURON, 1999, 23 (03) :449-459
[8]   SUMMATION AND DIVISION BY NEURONS IN PRIMATE VISUAL-CORTEX [J].
CARANDINI, M ;
HEEGER, DJ .
SCIENCE, 1994, 264 (5163) :1333-1336
[9]   Gain modulation from background synaptic input [J].
Chance, FS ;
Abbott, LF ;
Reyes, AD .
NEURON, 2002, 35 (04) :773-782
[10]   IDENTIFIED GABAERGIC INHIBITORY MOTOR NEURONS IN THE LEECH CENTRAL NERVOUS-SYSTEM TAKE UP GABA [J].
CLINE, HT ;
NUSBAUM, MP ;
KRISTAN, WB .
BRAIN RESEARCH, 1985, 348 (02) :359-362