Diffusion and related transport mechanisms in brain tissue

被引:348
作者
Nicholson, C [1 ]
机构
[1] NYU, Sch Med, Dept Physiol & Neurosci, New York, NY 10003 USA
关键词
D O I
10.1088/0034-4885/64/7/202
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Diffusion plays a crucial role in brain function. The spaces between cells can be likened to the water phase of a foam and many substances move within this complicated region. Diffusion in this interstitial space can be accurately modelled with appropriate modifications of classical equations and quantified from measurements based on novel micro-techniques. Besides delivering glucose and oxygen from the vascular system to brain cells, diffusion also moves informational substances between cells, a process known as volume transmission. Deviations from expected results reveal how local uptake, degradation or bulk flow may modify the transport of molecules. Diffusion is also essential to many therapies that deliver drugs to the brain. The diffusion-generated concentration distributions of well-chosen molecules also reveal the structure of brain tissue. This structure is represented by the volume fraction (void space) and the tortuosity (hindrance to diffusion imposed by local boundaries or local viscosity). Analysis of these parameters also reveals how the local geometry of the brain changes with time or under pathological conditions. Theoretical and experimental approaches borrow from classical diffusion theory and from porous media concepts. Earlier studies were based on radiotracers but the recent methods use a point-source paradigm coupled with micro-sensors or optical imaging of macromolecules labelled with fluorescent tags. These concepts and methods are likely to be applicable elsewhere to measure diffusion properties in very small volumes of highly structured but delicate material.
引用
收藏
页码:815 / 884
页数:70
相关论文
共 339 条
[1]   Transporting therapeutics across the blood-brain barrier [J].
Abbott, NJ ;
Romero, IA .
MOLECULAR MEDICINE TODAY, 1996, 2 (03) :106-113
[2]  
ABBOTT NJ, 1992, J PHYSIOL-LONDON, V446, pP496
[3]  
ABBOTT NJ, 1985, SEPAI OFFICINALIS J, V368, P213
[4]   RESTRICTED DIFFUSION OF MACROMOLECULES THROUGH AGAR-GEL MEMBRANES [J].
ACKERS, GK ;
STEERE, RL .
BIOCHIMICA ET BIOPHYSICA ACTA, 1962, 59 (01) :137-&
[5]   KINETICS OF MECHANICAL ACTIVATION IN FROG MUSCLE [J].
ADRIAN, RH ;
CHANDLER, WK ;
HODGKIN, AL .
JOURNAL OF PHYSIOLOGY-LONDON, 1969, 204 (01) :207-+
[6]   LONG-TERM CROSS-SPECIES BRAIN TRANSPLANTATION OF A POLYMER-ENCAPSULATED DOPAMINE-SECRETING CELL-LINE [J].
AEBISCHER, P ;
TRESCO, PA ;
WINN, SR ;
GREENE, LA ;
JAEGER, CB .
EXPERIMENTAL NEUROLOGY, 1991, 111 (03) :269-275
[7]  
Agnati IF, 2000, VOLUME TRANSMISSION
[8]   INTERCELLULAR COMMUNICATION IN THE BRAIN - WIRING VERSUS VOLUME TRANSMISSION [J].
AGNATI, LF ;
ZOLI, M ;
STROMBERG, I ;
FUXE, K .
NEUROSCIENCE, 1995, 69 (03) :711-726
[9]  
Alberts B., 1994, MOL BIOL CELL
[10]   INTRACEREBRAL MICRODIALYSIS .2. MATHEMATICAL STUDIES OF DIFFUSION KINETICS [J].
AMBERG, G ;
LINDEFORS, N .
JOURNAL OF PHARMACOLOGICAL METHODS, 1989, 22 (03) :157-183