Local-global conformational coupling in a heptahelical membrane protein: Transport mechanism from crystal structures of the nine states in the bacteriorhodopsin photocycle

被引:43
作者
Lanyi, JK [1 ]
Schobert, B [1 ]
机构
[1] Univ Calif Irvine, Dept Physiol & Biophys, Irvine, CA 92697 USA
关键词
D O I
10.1021/bi035843s
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Proton pumps utilize a chemical or photochemical reaction to create pH and electrical gradients between the interior and the exterior of cells and organelles that energize ATP synthesis and the accumulation and extrusion of solutes and ions. G-protein coupled receptors bind agonists and assume signaling states that communicate with the coupled transducers. How these two kinds of proteins convert chemical potential to a proton transmembrane electrochemical potential or a signal are the great questions in structural membrane biology, and they may have a common answer. Bacteriorhodopsin, a particularly simple integral membrane protein, functions as a proton pump but has a heptahelical structure like membrane receptors. Crystallographic structures are now available for all of the intermediates of the bacteriorhodopsin transport cycle, and they describe the proton translocation mechanism, step by step and in atomic detail. The results show how local conformational changes propagate upon the gradual relaxation of the initially twisted photoisomerized retinal toward the two membrane surfaces. Such local-global conformational coupling between the ligand-binding site and the distant regions of the protein may be the shared mechanism of ion pumps and G-protein related receptors.
引用
收藏
页码:3 / 8
页数:6
相关论文
共 55 条
[1]   Titration of aspartate-85 in bacteriorhodopsin: What it says about chromophore isomerization and proton release [J].
Balashov, SP ;
Imasheva, ES ;
Govindjee, R ;
Ebrey, TG .
BIOPHYSICAL JOURNAL, 1996, 70 (01) :473-481
[2]   Bacterial rhodopsin:: Evidence for a new type of phototrophy in the sea [J].
Béjà, O ;
Aravind, L ;
Koonin, EV ;
Suzuki, MT ;
Hadd, A ;
Nguyen, LP ;
Jovanovich, S ;
Gates, CM ;
Feldman, RA ;
Spudich, JL ;
Spudich, EN ;
DeLong, EF .
SCIENCE, 2000, 289 (5486) :1902-1906
[3]   Protein, lipid and water organization in bacteriorhodopsin crystals:: a molecular view of the purple membrana at 1.9 Å resolution [J].
Belrhali, H ;
Nollert, P ;
Royant, A ;
Menzel, C ;
Rosenbusch, JP ;
Landau, EM ;
Pebay-Peyroula, E .
STRUCTURE, 1999, 7 (08) :909-917
[4]   Chemical and physical evidence for multiple functional steps comprising the M state of the bacteriorhodopsin photocycle [J].
Betancourt, FMH ;
Glaeser, RM .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2000, 1460 (01) :106-118
[5]   Interaction of proton and chloride transfer pathways in recombinant bacteriorhodopsin with chloride transport activity: Implications for the chloride translocation mechanism [J].
Brown, LS ;
Needleman, R ;
Lanyi, JK .
BIOCHEMISTRY, 1996, 35 (50) :16048-16054
[6]   Determination of the transiently lowered pK(a) of the retinal Schiff base during the photocycle of bacteriorhodopsin [J].
Brown, LS ;
Lanyi, JK .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (04) :1731-1734
[7]   Conformlational change of the E-F interhelical loop in the M photointermediate of bacteriorhodopsin [J].
Brown, LS ;
Needleman, R ;
Lanyi, JK .
JOURNAL OF MOLECULAR BIOLOGY, 2002, 317 (03) :471-478
[8]   Connectivity of the retinal Schiff base to Asp85 and Asp96 during the bacteriorhodopsin photocycle:: The local-access model [J].
Brown, LS ;
Dioumaev, AK ;
Needleman, R ;
Lanyi, JK .
BIOPHYSICAL JOURNAL, 1998, 75 (03) :1455-1465
[9]   Local-access model for proton transfer in bacteriorhodopsin [J].
Brown, LS ;
Dioumaev, AK ;
Needleman, R ;
Lanyi, JK .
BIOCHEMISTRY, 1998, 37 (11) :3982-3993
[10]   WATER IS REQUIRED FOR PROTON-TRANSFER FROM ASPARTATE-96 TO THE BACTERIORHODOPSIN SCHIFF-BASE [J].
CAO, Y ;
VARO, G ;
CHANG, M ;
NI, BF ;
NEEDLEMAN, R ;
LANYI, JK .
BIOCHEMISTRY, 1991, 30 (45) :10972-10979