Dopamine-containing neurons are silenced by energy deprivation: A defensive response or beginning of cell death?

被引:12
作者
Guatteo, E
Marinelli, S
Geracitano, R
Tozzi, A
Federici, M
Bernardi, G
Mercuri, NB
机构
[1] IRCCS, Fdn Santa Lucia, Lab Neurol Sperimentale, I-00179 Rome, Italy
[2] Univ Roma Tor Vergata, I-00133 Rome, Italy
关键词
metabolic stress; ATP-sensitive K+ channels; calcium; sodium; neuroprotection; K-ATP CHANNELS; SENSITIVE POTASSIUM CHANNELS; GLUCOSE DEPRIVATION; RAT; SULFONYLUREA; ANOXIA; GLUTAMATE; CURRENTS; HYPOXIA; HYPERPOLARIZATION;
D O I
10.1016/j.neuro.2005.01.013
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Metabolic stress associated to mitochondrial dysfunction has been put forward as an important factor causing degeneration of mesencephalic dopamine-containing neurons in Parkinson's disease (PD). Here we overview how these neurons react to acute hypoxia or hypoglycemia, that are conditions of energy deprivation causing a reduced production of ATP by mitochondria. These neurons, which show a tonic firing discharge under normal condition, undergo into membrane hyperpolarization during hypoxia or hypoglycemia that silence their spontaneous activin:. We outline the cellular mechanisms causing membrane hyperpolarization and the accompanied disturbances of intracellular calcium and sodium homeostasis. A better understanding of the changes occurring during transient energy deprivation might contribute to understand the physiopathology of these neurons that derives from mitochondrial dysfunction. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:857 / 868
页数:12
相关论文
共 45 条
[1]   The sulphonylurea receptor confers diazoxide sensitivity on the inwardly rectifying K+ channel Kir6.1 expressed in human embryonic kidney cells [J].
Ammala, C ;
Moorhouse, A ;
Ashcroft, FM .
JOURNAL OF PHYSIOLOGY-LONDON, 1996, 494 (03) :709-714
[2]   ADENOSINE 5'-TRIPHOSPHATE-SENSITIVE POTASSIUM CHANNELS [J].
ASHCROFT, FM .
ANNUAL REVIEW OF NEUROSCIENCE, 1988, 11 :97-118
[3]   GLUCOSE-INDUCED EXCITATION OF HYPOTHALAMIC NEURONS IS MEDIATED BY ATP-SENSITIVE K+ CHANNELS [J].
ASHFORD, MLJ ;
BODEN, PR ;
TREHERNE, JM .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 1990, 415 (04) :479-483
[4]   Protective role of neuronal KATP channels in brain hypoxia [J].
Ballanyi, K .
JOURNAL OF EXPERIMENTAL BIOLOGY, 2004, 207 (18) :3201-3212
[5]   INTERNAL CA2+ STORES INVOLVED IN ANOXIC RESPONSES OF RAT HIPPOCAMPAL-NEURONS [J].
BELOUSOV, AB ;
GODFRAIND, JM ;
KRNJEVIC, K .
JOURNAL OF PHYSIOLOGY-LONDON, 1995, 486 (03) :547-556
[6]  
BENARI Y, 1992, BIOL NEONATE, V62, P225
[7]   ELEVATION OF THE EXTRACELLULAR CONCENTRATIONS OF GLUTAMATE AND ASPARTATE IN RAT HIPPOCAMPUS DURING TRANSIENT CEREBRAL-ISCHEMIA MONITORED BY INTRACEREBRAL MICRODIALYSIS [J].
BENVENISTE, H ;
DREJER, J ;
SCHOUSBOE, A ;
DIEMER, NH .
JOURNAL OF NEUROCHEMISTRY, 1984, 43 (05) :1369-1374
[8]   CHARACTERIZATION, PURIFICATION, AND AFFINITY LABELING OF THE BRAIN [H-3] GLIBENCLAMIDE-BINDING PROTEIN, A PUTATIVE NEURONAL ATP-REGULATED K+ CHANNEL [J].
BERNARDI, H ;
FOSSET, M ;
LAZDUNSKI, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (24) :9816-9820
[9]   Chronic systemic pesticide exposure reproduces features of Parkinson's disease [J].
Betarbet, R ;
Sherer, TB ;
MacKenzie, G ;
Garcia-Osuna, M ;
Panov, AV ;
Greenamyre, JT .
NATURE NEUROSCIENCE, 2000, 3 (12) :1301-1306
[10]  
Betarbet R, 2002, BRAIN PATHOL, V12, P499