Fast, robust total variation-based reconstruction of noisy, blurred images

被引:466
作者
Vogel, CR [1 ]
Oman, ME
机构
[1] Montana State Univ, Dept Math Sci, Bozeman, MT 59717 USA
[2] Iowa State Univ, US DOE, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
cell-centered finite differences; conjugate gradient; deconvolution; fixed point iteration; image reconstruction; preconditioner; regularization; total variation;
D O I
10.1109/83.679423
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Tikhonov regularization with a modified total variation regularization functional is used to recover an image from noisy, blurred data. This approach is appropriate for image processing in that it does not place a priori smoothness conditions on the solution image. An efficient algorithm is presented for the discretized problem that combines a fixed point iteration to handle nonlinearity with a new, effective preconditioned conjugate gradient iteration for large linear systems. Reconstructions, convergence results, and a direct comparison with a fast linear solver are presented for a satellite image reconstruction application.
引用
收藏
页码:813 / 824
页数:12
相关论文
共 35 条
[1]   ANALYSIS OF BOUNDED VARIATION PENALTY METHODS FOR ILL-POSED PROBLEMS [J].
ACAR, R ;
VOGEL, CR .
INVERSE PROBLEMS, 1994, 10 (06) :1217-1229
[2]  
Axelsson O., 1994, ITERATIVE SOLUTION M
[3]  
Axelsson O., 1984, Finite Element Solution of Boundary Value Problems: Theory and Computation
[4]   NUMERICAL-SOLUTION OF FREDHOLM INTEGRAL-EQUATIONS OF FIRST KIND [J].
BAKER, CTH ;
WRIGHT, K ;
FOX, L ;
MAYERS, DF .
COMPUTER JOURNAL, 1964, 7 (02) :141-&
[5]   Image recovery via total variation minimization and related problems [J].
Chambolle, A ;
Lions, PL .
NUMERISCHE MATHEMATIK, 1997, 76 (02) :167-188
[6]   Conjugate gradient methods for toeplitz systems [J].
Chan, RH ;
Ng, MK .
SIAM REVIEW, 1996, 38 (03) :427-482
[7]  
Chan RH, 1996, NUMER LINEAR ALGEBR, V3, P45, DOI 10.1002/(SICI)1099-1506(199601/02)3:1<45::AID-NLA70>3.0.CO
[8]  
2-T
[9]  
CHAN TF, P SPIE 199K ADV SIGN, V2563
[10]  
CHAN TF, 1996, P 12 INT C AN OPT SY, P241