Green's function measurements of force transmission in 2D granular materials

被引:130
作者
Geng, JF
Reydellet, G
Clément, E
Behringer, RP
机构
[1] Duke Univ, Ctr Nonlinear & Complex Syst, Durham, NC 27708 USA
[2] Univ Paris 06, F-75231 Paris, France
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
granular materials; stress chains; response functions; photoelasticity; STRESS FLUCTUATIONS; PROPAGATION; SIMULATIONS; NETWORK; MODEL;
D O I
10.1016/S0167-2789(03)00137-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe experiments that probe the response to a point force of 2D granular systems under a variety of conditions. Using photoelastic particles to determine forces at the grain scale, we obtain ensembles of responses for the following particle types, packing geometries and conditions: monodisperse ordered hexagonal packings of disks, bidisperse packings of disks with different amounts of disorder, disks packed in a regular rectangular lattice with different frictional properties, packings of pentagonal particles, systems with forces applied at an arbitrary angle at the surface, and systems prepared with shear deformation, hence with texture or anisotropy. We experimentally show that disorder, packing structure, friction and texture significantly affect the average force response in granular systems. For packings with weak disorder, the mean forces propagate primarily along lattice directions. The width of the response along these preferred directions grows with depth, increasingly so as the disorder of the system grows. Also, as the disorder increases, the two propagation directions of the mean force merge into a single direction. The response function for the mean force in the most strongly disordered system is quantitatively consistent with an elastic description for forces applied nearly normally to a surface, but this description is not as good for non-normal applied forces. These observations are consistent with recent predictions of Bouchaud et al. [Eur. Phys. J. E 4 (2001) 451] and Socolar et al. [Eur. Phys. J. E 7 (2002) 353] and with the anisotropic elasticity models of Goldenberg and Goldhirsch [Phys. Rev. Lett. 89 (2002) 084302]. At this time, it is not possible to distinguish between these two models. The data do not support a diffusive picture, as in the q-model, and they are in conflict with data by Da Silva and Rajchenbach [Nature 406 (2000) 708] that indicate a parabolic response for a system consisting of cuboidal blocks. We also explore the spatial properties of force chains in an anisotropic textured system created by a nearly uniform shear. This system is characterized by stress chains that are strongly oriented along an angle of 45degrees, corresponding to the compressive direction of the shear deformation. In this case, the spatial correlation function for force has a range of only one particle size in the direction transverse to the chains, and varies as a power law in the direction of the chains, with an exponent of -0.81. The response to forces is the strongest along the direction of the force chains, as expected. Forces applied in other directions are effectively refocused towards the strong force chain direction. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:274 / 303
页数:30
相关论文
共 49 条
[1]   Introduction to the focus issue on granular materials [J].
Behringer, R ;
Jaeger, H ;
Nagel, S .
CHAOS, 1999, 9 (03) :509-510
[2]  
Behringer R.P., 1997, POWDERS GRAINS 97
[3]  
BOUCHAUD JP, 1995, J PHYS I, V5, P639, DOI 10.1051/jp1:1995157
[4]   Force chain splitting in granular materials: A mechanism for large-scale pseudo-elastic behaviour [J].
Bouchaud, JP ;
Claudin, P ;
Levine, D ;
Otto, M .
EUROPEAN PHYSICAL JOURNAL E, 2001, 4 (04) :451-457
[5]   Stress response function of two-dimensional ordered packing of frictional beads [J].
Breton, L ;
Claudin, P ;
Clément, É ;
Zucker, JD .
EUROPHYSICS LETTERS, 2002, 60 (06) :813-819
[6]   Jamming, force chains, and fragile matter [J].
Cates, ME ;
Wittmer, JP ;
Bouchaud, JP ;
Claudin, P .
PHYSICAL REVIEW LETTERS, 1998, 81 (09) :1841-1844
[7]   Models of stress fluctuations in granular media [J].
Claudin, P ;
Bouchaud, JP ;
Cates, ME ;
Wittmer, JP .
PHYSICAL REVIEW E, 1998, 57 (04) :4441-4457
[8]   Model for force fluctuations in bead packs [J].
Coppersmith, SN ;
Liu, C ;
Majumdar, S ;
Narayan, O ;
Witten, TA .
PHYSICAL REVIEW E, 1996, 53 (05) :4673-4685
[9]   Stress transmission through a model system of cohesionless elastic grains [J].
Da Silva, M ;
Rajchenbach, J .
NATURE, 2000, 406 (6797) :708-710
[10]   STATISTICAL STUDY OF INTERGRANULAR FORCES IN A POWDERY MEDIUM [J].
DANTU, P .
GEOTECHNIQUE, 1968, 18 (01) :50-&