The hydrodynamic limit for the reaction diffusion equation - An approach in terms of the GPV method

被引:9
作者
Feng, JF [1 ]
机构
[1] UNIV MUNICH,INST MATH,D-80333 MUNICH,GERMANY
关键词
reaction diffusion process; hydrodynamic limit; reaction diffusion equation; local central limit theorem;
D O I
10.1007/BF02214650
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the hydrodynamic limit of the reaction diffusion process by means of the GPV technique (Guo et al.((4))). To this end, we first derive a priori bounds on the moments of the occupation numbers using the local central limit theorem and results of stochastic analysis. The result of De Masi and Presutti((2)) for the hydrodynamic limit of the reaction diffusion process is generalized here.
引用
收藏
页码:285 / 299
页数:15
相关论文
共 8 条
[1]  
CHEN MF, 1986, JUMP PROCESSES PARTI
[2]  
DEMASI A, 1991, LNM, V1501
[3]  
Feller W., 1957, INTRO PROBABILITY TH, VI
[4]   NONLINEAR DIFFUSION LIMIT FOR A SYSTEM WITH NEAREST NEIGHBOR INTERACTIONS [J].
GUO, MZ ;
PAPANICOLAOU, GC ;
VARADHAN, SRS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 118 (01) :31-59
[5]  
LIGGETT T.M., 1985, Interacting particle systems, V276
[6]  
Protter P.E., 2004, Stochastic Integration and Differential Equations, V2nd
[7]  
Spohn H., 2012, Large scale dynamics of interacting particles
[8]   RELATIVE ENTROPY AND HYDRODYNAMICS OF GINZBURG-LANDAU MODELS [J].
YAU, HT .
LETTERS IN MATHEMATICAL PHYSICS, 1991, 22 (01) :63-80