Solution structure and dynamics of the functional domain of Paracoccus denitrificans cytochrome c552 in both redox states

被引:25
作者
Reincke, B
Pérez, C
Pristovsek, P
Lücke, C
Ludwig, C
Löhr, F
Rogov, VV
Ludwig, B
Rüterjans, H
机构
[1] Univ Frankfurt, Inst Biophys Chem, Biozentrum N230 1 OG, D-60439 Frankfurt, Germany
[2] Univ Frankfurt, Inst Mol Genet, D-60439 Frankfurt, Germany
关键词
D O I
10.1021/bi010615o
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A soluble and fully functional 10.5 kDa fragment of the 18.2 kDa membrane-bound cytochrome c(552) from Paracoccus denitrificans has been heterologously expressed and C-13/N-15-labeled to study the structural features of this protein in both redox states. Well-resolved solution structures of both the reduced and oxidized states have been determined using high-resolution heteronuclear NMR. The overall protein topology consists of two long terminal helices and three shorter helices surrounding the heme moiety. No significant redox-induced structural differences have been observed, N-15 relaxation rates and heteronuclear NOE values were determined at 500 and 600 MHz. Several residues located around the heme moiety display increased backbone mobility in both oxidation states, while helices I, III, and V as well as the two concatenated beta -turns between Leu30 and Arg36 apparently form a less flexible domain within the protein structure. Major redox-state-dependent differences of the internal backbone mobility on the picosecond-nanosecond time scale were not evident. Hydrogen exchange experiments demonstrated that the slow-exchanging amide proton resonances mainly belong to the helices and beta -turns, corresponding to the regions with high order parameters in the dynamics data. Despite this correlation, the backbone amide protons of the oxidized cytochrome c(552) exchange considerably faster with the solvent compared to the reduced protein. Using both differential scanning calorimetry as well as temperature-dependent NMR spectroscopy, a significant difference in the thermostabilities of the two redox states has been observed, with transition temperatures of 349.9 K (76.8 degreesC) for reduced and 307.5 K (34.4 degreesC) for oxidized cytochrome c(552). These results suggest a clearly distinct backbone stability between the two oxidation states.
引用
收藏
页码:12312 / 12320
页数:9
相关论文
共 48 条
[1]  
[Anonymous], 2018, Protein nmr spectroscopy: principles and practice
[2]   PROTEIN-FOLDING INTERMEDIATES - NATIVE-STATE HYDROGEN-EXCHANGE [J].
BAI, YW ;
SOSNICK, TR ;
MAYNE, L ;
ENGLANDER, SW .
SCIENCE, 1995, 269 (5221) :192-197
[3]  
Banci L, 1997, PROTEINS, V29, P68, DOI 10.1002/(SICI)1097-0134(199709)29:1<68::AID-PROT5>3.0.CO
[4]  
2-B
[5]   PSEUDYANA for NMR structure calculation of paramagnetic metalloproteins using torsion angle molecular dynamics [J].
Banci, L ;
Bertini, I ;
Cremonini, MA ;
Gori-Savellini, G ;
Luchinat, C ;
Wüthrich, K ;
Güntert, P .
JOURNAL OF BIOMOLECULAR NMR, 1998, 12 (04) :553-557
[6]   The use of pseudocontact shifts to refine solution of paramagnetic metalloproteins: Met80Ala cyano-cytochrome c as an example [J].
Banci, L ;
Bertini, I ;
Bren, KL ;
Cremonini, MA ;
Gray, HB ;
Luchinat, C ;
Turano, P .
JOURNAL OF BIOLOGICAL INORGANIC CHEMISTRY, 1996, 1 (02) :117-126
[7]   Solution structure of oxidized horse heart cytochrome c [J].
Banci, L ;
Bertini, I ;
Gray, HB ;
Luchinat, C ;
Reddig, T ;
Rosato, A ;
Turano, P .
BIOCHEMISTRY, 1997, 36 (32) :9867-9877
[8]   Partial orientation of oxidized and reduced cytochrome b5 at high magnetic fields:: Magnetic susceptibility anisotropy contributions and consequences for protein solution structure determination [J].
Banci, L ;
Bertini, I ;
Huber, JG ;
Luchinat, C ;
Rosato, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (49) :12903-12909
[9]   Solution structure of oxidized Saccharomyces cerevisiae iso-1-cytochrome c [J].
Banci, L ;
Bertini, I ;
Bren, KL ;
Gray, HB ;
Sompornpisut, P ;
Turano, P .
BIOCHEMISTRY, 1997, 36 (29) :8992-9001
[10]   A molecular dynamics study in explicit water of the reduced and oxidized forms of yeast iso-1-cytochrome c - Solvation and dynamic properties of the two oxidation states [J].
Banci, L ;
GoriSavellini, G ;
Turano, P .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1997, 249 (03) :716-723