Relation between polymer and Fock excitations

被引:60
作者
Ashtekar, A
Lewandowski, J
机构
[1] Penn State Univ, Dept Phys, University Pk, PA 16802 USA
[2] Univ Warsaw, Inst Theoret Phys, PL-00681 Warsaw, Poland
[3] Albert Einstein Inst, Max Planck Inst Gravitat Phys, D-14476 Golm, Germany
基金
美国国家科学基金会;
关键词
D O I
10.1088/0264-9381/18/18/102
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
To bridge the gap between background-independent, non-perturbative quantum gravity and low-energy physics described by perturbative field theory in Minkowski spacetime, Minkowskian Fock states are located, analysed and used in the background-independent framework. This approach to the analysis of semiclassical issues is motivated by the recent results of Varadarajan (Varadarajan M and Zapata J A 2000 Class. Quantum Grav. 17 4085-109). As in that work, we use the simpler U(l) example to illustrate our constructions but, in contrast to that work, we formulate the theory in such a way that it can be extended to full general relativity.
引用
收藏
页码:L117 / L127
页数:11
相关论文
共 49 条
[1]   Loop quantum gravity on non-compact spaces [J].
Arnsdorf, M ;
Gupta, S .
NUCLEAR PHYSICS B, 2000, 577 (03) :529-546
[2]   Coherent state transforms for spaces of connections [J].
Ashtekar, A ;
Lewandowski, J ;
Marolf, D ;
Mourao, J ;
Thiemann, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 135 (02) :519-551
[3]   DIFFERENTIAL GEOMETRY ON THE SPACE OF CONNECTIONS VIA GRAPHS AND PROJECTIVE-LIMITS [J].
ASHTEKAR, A ;
LEWANDOWSKI, J .
JOURNAL OF GEOMETRY AND PHYSICS, 1995, 17 (03) :191-230
[4]   QUANTIZATION OF DIFFEOMORPHISM INVARIANT THEORIES OF CONNECTIONS WITH LOCAL DEGREES OF FREEDOM [J].
ASHTEKAR, A ;
LEWANDOWSKI, J ;
MAROLF, D ;
MOURAO, J ;
THIEMANN, T .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (11) :6456-6493
[5]   Quantum theory of geometry: I. Area operators [J].
Ashtekar, A ;
Lewandowski, J .
CLASSICAL AND QUANTUM GRAVITY, 1997, 14 (1A) :A55-A81
[6]   WEAVING A CLASSICAL METRIC WITH QUANTUM THREADS [J].
ASHTEKAR, A ;
ROVELLI, C ;
SMOLIN, L .
PHYSICAL REVIEW LETTERS, 1992, 69 (02) :237-240
[7]   REPRESENTATIONS OF THE HOLONOMY ALGEBRAS OF GRAVITY AND NON-ABELIAN GAUGE-THEORIES [J].
ASHTEKAR, A ;
ISHAM, CJ .
CLASSICAL AND QUANTUM GRAVITY, 1992, 9 (06) :1433-1467
[8]   PROJECTIVE TECHNIQUES AND FUNCTIONAL-INTEGRATION FOR GAUGE-THEORIES [J].
ASHTEKAR, A ;
LEWANDOWSKI, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (05) :2170-2191
[9]   Quantum geometry and black hole entropy [J].
Ashtekar, A ;
Baez, J ;
Corichi, A ;
Krasnov, K .
PHYSICAL REVIEW LETTERS, 1998, 80 (05) :904-907
[10]   GRAVITONS AND LOOPS [J].
ASHTEKAR, A ;
ROVELLI, C ;
SMOLIN, L .
PHYSICAL REVIEW D, 1991, 44 (06) :1740-1755