Osteoblast elastic modulus measured by atomic force microscopy is substrate dependent

被引:133
作者
Takai, E
Costa, KD
Shaheen, A
Hung, CT
Guo, XE
机构
[1] Columbia Univ, Bone Bioengn Lab, New York, NY 10027 USA
[2] Columbia Univ, Cardiac Cell Mech Lab, New York, NY USA
[3] Columbia Univ, Dept Biomed Engn, Cellular Engn Lab, New York, NY USA
关键词
osteoblasts; extracellular matrix; atomic force microscopy; modulus;
D O I
10.1007/s10439-005-3555-3
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The actin and microtubule cytoskeleton have been found to contribute to the elastic modulus of cells, which may be modulated by adhesion to extracellular matrix (ECM) proteins and subsequent alterations in the cytoskeleton. In this study, the apparent elastic modulus (E-app) of osteoblast-like MC3T3-E1 cells adhered to fibronectin (FN), vitronectin (VN), type I collagen (COLI), fetal bovine serum (FBS), or poly-l-lysine (PLL), and bare glass were determined using an atomic force microscope (AFM). The E-app of osteoblasts adhered to ECM proteins (FN, VN, COLI, and FBS) that bind cells via integrins were higher compared to cells on glass and PLL, which adhere cells through nonspecific binding. Also, osteoblasts adhered to FN, VN, COLI, and FBS had F-actin stress fiber formation, while osteoblasts on glass and PLL showed few F-actin fibers. Disruption of the actin cytoskeleton decreased E-app of osteoblasts plated on FN to the level of osteoblasts plated on glass, while microtubule disruption had no significant effect. This suggests that the elevated modulus of osteoblasts adhered to FN was due to remodeling of the actin cytoskeleton upon adhesion to ECM proteins. Modulation of cell stiffness upon adhesion to various substrates may influence mechanosignal transduction in osteoblasts.
引用
收藏
页码:963 / 971
页数:9
相关论文
共 74 条
[1]   Pulsating fluid flow increases prostaglandin production by cultured chicken osteocytes - A cytoskeleton-dependent process [J].
Ajubi, NE ;
KleinNulend, J ;
Nijweide, PJ ;
VrijheidLammers, T ;
Alblas, MJ ;
Burger, EH .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1996, 225 (01) :62-68
[2]   Signal transduction pathways involved in fluid flow-induced PGE2 production by cultured osteocytes [J].
Ajubi, NE ;
Klein-Nulend, J ;
Alblas, MJ ;
Burger, EH ;
Nijweide, PJ .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 1999, 276 (01) :E171-E178
[3]   Serum modulates the intracellular calcium response of primary cultured bone cells to shear flow [J].
Allen, FD ;
Hung, CT ;
Pollack, SR ;
Brighton, CT .
JOURNAL OF BIOMECHANICS, 2000, 33 (12) :1585-1591
[4]   Proliferation and differentiation of rat calvarial osteoblasts on type I collagen-coated titanium alloy [J].
Becker, D ;
Geissler, U ;
Hempel, U ;
Bierbaum, S ;
Scharnweber, D ;
Worch, H ;
Wenzel, KW .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 2002, 59 (03) :516-527
[5]   ATOMIC FORCE MICROSCOPE [J].
BINNIG, G ;
QUATE, CF ;
GERBER, C .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :930-933
[6]   COMPOSITION OF THE CEMENT LINE AND ITS POSSIBLE MECHANICAL ROLE AS A LOCAL INTERFACE INHUMAN COMPACT-BONE [J].
BURR, DB ;
SCHAFFLER, MB ;
FREDERICKSON, RG .
JOURNAL OF BIOMECHANICS, 1988, 21 (11) :939-&
[7]   Selective adhesion of osteoblastic cells to different integrin ligands induces osteopontin gene expression [J].
Carvalho, RS ;
Kostenuik, PJ ;
Salih, E ;
Bumann, A ;
Gerstenfeld, LC .
MATRIX BIOLOGY, 2003, 22 (03) :241-249
[8]  
Carvalho RS, 1998, J CELL BIOCHEM, V70, P376, DOI 10.1002/(SICI)1097-4644(19980901)70:3<376::AID-JCB11>3.0.CO
[9]  
2-J
[10]   Single cell mechanotransduction and its modulation analyzed by atomic force microscope indentation [J].
Charras, GT ;
Horton, MA .
BIOPHYSICAL JOURNAL, 2002, 82 (06) :2970-2981